
WANT MORE UNIKERNELS?
INFLATE THEM!

GAULTHIER GAIN, CYRIL SOLDANI, FELIPE HUICI*, PROF. LAURENT MATHY

UNIVERSITÉ DE LIÈGE

ACM Symposium on Cloud Computing (SoCC ’22),
 November 8–10, 2022, San Francisco, CA, USA.

* Unikra GmbH

Virtual Machines (VMs) Containers

Heavyweight
— Degrade performance

Strong isolation Poor isolation
— A lot of exploits

Lightweight
— Share underlying kernel

2

DILEMMA

DILEMMA

Virtual Machines (VMs) Containers

Heavyweight
— Degrade performance

Strong isolation

Lightweight
— Share underlying kernel

Poor isolation
— A lot of exploits

Solution → Unikernels

3

Unikernels are purpose-built:

‣ in kernel layer (only the necessary features that the application needs).

‣ Essential functions are placed into micro-libs (µlibs) with well-defined
behaviour.

UNIKERNELS

 Virtual Machines (VMs) Unikernels

App2

bins/libs

App1

bins/libs

App3

bins/libs

Hypervisor

Hardware

App1

bins/libs

App2

bins/libs

App3

bins/libs

Hypervisor

Hardware

4

‣ Fast instantiation, destruction and migration times:

‣ Hundred of milliseconds.

‣ Small per-instance memory footprint:

‣ Few MBs or even KBs.

‣ High performance:

‣ 10-40 Gbps throughput.

‣ Reduced aack surface.

‣ Less components

‣ High density:

‣ ousand of instances on a single host → Can we do beer ?

UNIKERNELS GAINS

5

RUNNING A LARGE NUMBER OF UNIKERNELS

6

� ��� ��� ��� ��� ���
7LPH�>V@

�

���

���

���

����

����

����

����

0
HP
RU
\�
>0
%@

VKDUHDEOH�SDJHV
XQLTXH�SDJHV��XQVKDUHG�

Evolution of unshared and shareable (i.e. having at least one copy) pages when
running 1000 different FaaS unikernels (with ASLR) on a single physical server.

‣ We investigated by running a large number of unikernels on a same
physical server and we relied on a memory deduplication scanner (UKSM*).

‣ Unique pages are much more frequent than shared pages.

‣ Specialisation? Need further investigation to understand the reason.

*Ultra Kernel Same-Page Merging

MEMORY DEDUPLICATION WITH UNIKERNELS: OVERVIEW

‣ Having several instances will result into different µlibs configurations.

‣ e underlying build system does not have a global overview of the µlibs: Each
unikernel is built in an individual way.

‣ All µlibs are compacted: resulting unikernel consumes as lile memory and disk
space as possible.

.text

.data

0x1000

ukdevuknolibc

ukboot uksched

ukbus ukprocess

Unikernel 1

ukbus

uksched

ukprocess uknolibc

0x1000.text

ukboot

Unikernel 2

0x5000.data

uksrand
new µlib
inserted

7

ukdevuknolibc

0x4000

ukdevuknolibc

ukboot uksched

ukbus ukprocess ukbus

uksched

ukprocess uknolibc

ukboot

uksrand

ukdevuknolibc

0x1000.text

.data

If a new µlib ‘uksrand’ is inserted between other µlibs:

‣ µlibs’ code will be split across different pages.

‣ It reduces memory sharing since pages are different.

page

Unikernel 2

.text

.data

0x1000

Unikernel 1

55 48 89 e5 48 81 ec c0
00 00 00 48 89 bd 48 ff
…
b8 00 00 00 e8 00 00 00
00 b8 00 00 00 00 c9 c3

pa
ge

1

55 48 89 e5 48 81 ec c0
00 00 00 48 89 bd 48 ff
…
00 48 8d 35 00 00 00 00
00 b8 00 00 00 00 c9 c3

pa
ge

2

55 48 89 e5 48 81 ed c0
00 00 00 78 89 bd 48 ef
…
45 ec 8b 45 ec 48 83 c4
74 14 48 8b 45 b0 48 8b

pa
ge

3

55 48 89 e5 48 81 ec c0
00 00 00 48 89 bd 48 ff
…
b8 00 00 00 e8 00 00 00
00 b8 00 00 00 00 c9 c3

pa
ge

1

55 48 89 e5 48 83 ec 08
89 7d fc 89 75 f8 8b 45
…
00 e8 00 00 e8 28 ff ff
ff b8 00 00 00 00 c9 c3

pa
ge

2

8b 45 d8 0f b6 40 0b 0f
45 d8 89 d6 48 89 c7 e8
…
48 89 c7 e8 1a d3 0d 00
25 ff ff ff 3f 89 c2 8b

pa
ge

3

fc c9 c3 55 48 89 e5 48
83 ec 20 48 89 7d e8 89
…
40 04 25 00 04 00 00 85
c0 75 2f 48 8b 45 e8 48

pa
ge

4

8

0x4000

0x5000

MEMORY DEDUPLICATION WITH UNIKERNELS: ISSUE 1

.text

.data

0x1000

0x7000

MEMORY DEDUPLICATION WITH UNIKERNELS: A FIRST SOLUTION?

To circumvent this issue:

‣ Align each µlib to a page boundary address.

‣ Pad the µlib code with zeros to fill a complete page.

9

Unikernel 1

pa
ge

6

…

Unikernel 2

ukdev

uknolibc

uksched

ukbus

ukprocess

ukboot

padding with
zeros

uksched

ukboot

0x1000.text

.data 0x8000
…

→ Is it enough?

55 48 89 e5 48 81 ec c0
00 00 00 48 89 bd 48 ff
…
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

pa
ge

1

55 48 89 e5 48 81 ec c0
00 00 00 48 89 bd 48 ff
…
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

pa
ge

2

55 48 89 e5 48 81 ed c0
00 00 00 78 89 bd 48 ef
…
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

pa
ge

3

55 48 79 e6 48 81 ed c0
01 00 00 78 89 bd 48 ef
…
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

55 48 89 e5 48 81 ec c0
00 00 00 48 89 bd 48 ff
…
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

pa
ge

1

55 48 89 e5 48 81 ec c0
00 00 00 48 89 bd 48 ff
…
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

pa
ge

2

55 48 89 e5 48 83 ec 08
89 7d fc 89 75 f8 8b 45
…
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

pa
ge

3

55 48 79 e6 48 81 ed c0
01 00 00 78 89 bd 48 ef
…
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

pa
ge

7

uksrand

ukdev

uknolibc

ukprocess

ukbus

55 48 89 e5 48 81 ec c0
00 00 00 48 89 bd 48 ff
e8 ca 07 00 00 48 8b 55
7e 48 8d 15 4c 9b 01 00

55 48 89 e5 48 81 ec c0
00 00 00 48 89 bd 48 ff
e8 4f 06 00 00 48 8b 55
7e 48 8d 15 4b 79 01 00

MEMORY DEDUPLICATION WITH UNIKERNELS: ISSUE 2

Some instructions use different addresses in the .text section:

‣ Related to other sections (e.g., .data, .rodata): MOV and LEA.

‣ Related to another part of the .text section: CALL.

*2 lea 76587(%rip),
%rdx

*1 call 3615 <..>

*4 lea 85804(%rip),
%rdx

*3 call 4615 <..>

*2

*1

*4

*3

C
A
L
L*

1
L
E
A*

2

10

.text 0x1000

0x7000

Unikernel 1

ukdev

uknolibc

uksched

ukbus

ukprocess

ukboot

padding with
zeros

Unikernel 2

uksched

ukboot

uksrand

ukdev

0x1000.text

0x8000

uknolibc

ukprocess

ukbus

different addresses
=

different instructions

.data

pa
ge

2

.data

C
A
L
L*

3
L
E
A*

4

55 48 89 e5 48 81 ec c0
00 00 00 48 89 bd 48 ff
e8 4f 06 00 00 48 8b 55
7e 48 8d 15 4c 9b 01 00

Unikernel 2

uksched

ukboot

uksrand

ukdev

0x1000.text

uknolibc

ukprocess

ukbus

MEMORY DEDUPLICATION WITH UNIKERNELS: A WORKING SOLUTION

1. Placing µlibs at page boundary addresses.

2. Keep a same µlibs order.

3. Align sections (e.g., .data, .rodata, …) at same addresses.

*4 lea 85804(%rip),
%rdx

*3 call 3615 <..>

*2 lea 85804(%rip),
%rdx

*1 call 3615 <..>

*1

*2 *4

*3

same addresses

11

.text 0x1000

0x8000

Unikernel 1

ukdev

uknolibc

uksched

ukbus

ukprocess

ukboot

padding with
zeros

0x8000

=
same instructions

pa
ge

2

55 48 89 e5 48 81 ec c0
00 00 00 48 89 bd 48 ff
e8 4f 06 00 00 48 8b 55
7e 48 8d 15 4c 9b 01 00

C
A
L
L*

3
L
E
A*

4

.data

C
A
L
L*

1
L
E
A*

2

.data

ukbus

ukdev

uknolibc

ukboot

uksched

ukprocessukprocess

ukbus

ukdev

uknolibc

ukboot

uksched

ukprocess

MEMORY DEDUPLICATION WITH UNIKERNELS

If there are more than two instances with different µlibs subsets:

‣ It is necessary to align them to specific addresses.

‣ is leads to ‘gaps’ of zero pages in the memory virtual space.

ukbus

uksrand

ukdev

uknolibc

ukboot

uksched

.text 0x1000 0x1000.text

.data 0x10000 0x10000.data0x10000.data

0x1000.text

uklibduklibd

uksrand

ukringzero page

Unikernel 1 Unikernel 2 Unikernel 3

12

ukring padding with
zeros

zero page

padding with
zeros

TOWARDS ASLR SUPPORT

‣ Using fixed absolute addresses leads to security issues (no ASLR).

‣ Create an indirection table per µlib which contains problematic instructions
(using addresses from other sections/µlibs). Such instructions are replaced
by relative jump to their new position.

C
A
L
L

L
E
A

ukboot

uknolibc

.text 0x1000

0x10000

Unikernel2

ukdev

uknolibc
(ind)

ukboot
(ind)

ukdev
(ind)

.data

ukdev (0x4100):
 jmp eip+1100(0x5200)
 …
ukdev(ind) (0x5200):
 call 0x1200
 jmp 0x4105

ukdev (0x2100):
 jmp eip+1100(0x3200)
 …
ukdev(ind) (0x3200):
 call 0x4200
 jmp 0x2105

C
A
L
L

L
E
A

ukdev

ukboot

.text 0x1000

.data 0x9000

Unikernel1

uknolibc

ukboot
(ind)

ukdev
(ind)

uknolibc
(ind)

padding with
zeros

padding with
zeros

13

1. Relative jump to indirection
table;

2. Execute the problematic
instruction (indirection);

3. Jump back to the microlib
code.

SPACER HIGH-LEVEL ARCHITECTURE

‣ From our methodology, we derive Spacer, a tool aims to have a global knowledge of all the
µlibs used by all unikernels on the same workspace.

‣ Spacer performs a new linking by associating µlibs with absolute addresses according to a
map (by rewriting the linker script).

‣ For Spacer (ASLR), µlibs are shuffled during the linker file generation. Furthermore, there is
one extra step of binary rewriting (move problematic instructions to indirection tables).

Spacer

unikernel 1

① Analyse unikernel

unikernel 2 unikernel N…

workspace

③ Linking
② Generate linker.lds

(libs are shuffled)*1

④ Binary
rewriting*1

*1 These steps are only performed in Spacer (ASLR)

14

‣ We compared Spacer with DCE (Dead Code Elimination) and Default
configuration.

‣ 10 applications ported as unikernels.

‣ 1000 FaaS unikernels.

‣ On several dimensions: memory consumption, file size and performance.

15

EVALUATION: METHODOLOGY

16

EVALUATION (1)
Memory consumption:

‣ Without memory deduplication, Spacer and Spacer (ASLR) consume
significantly more memory (zero pages and indirection tables).

‣ With memory deduplication, the benefits of alignment increases as we
run more applications. Spacer and Spacer (ASLR) consume less memory
than default and DCE.

‣ Up to a 3x gain compared to DCE.

Heap-intensive applications:

‣ e gain is less noticeable (e.g., in-memory databases).

‣ If there are thousands of applications, Spacer still allows to reduce the
memory consumed (code and read-only data are shared).

‣ But if they are only some instances: do not apply Spacer on it.

17

EVALUATION (2)
Elf Size:

‣ Spacer and Spacer (ASLR) have a slight impact on file size:

‣ e inflation of the header string table (ELF section).

‣ Indirection tables (problematic instructions).

‣ Elf files do not have inflation due to zeros, it is only in memory.

Performance:

‣ Total execution time of short-lived and long-lived unikernels.

‣ UKSM has a slight impact on scanning and merging pages.

‣ Spacer performance degradation is minimal: having zero pages and
indirection tables introduces a slight overhead.

CONCLUSION & FUTURE WORK

‣ Unikernels are small and have impressive performance, but they show few
opportunities for VM page sharing (specialisation).

‣ We brought a new methodology that rearranges and inflates unikernels by
using µlibs alignment.

‣ Aligning µlibs may lead up to a big reduction in memory consumption, even
when compared to unikernels built with DCE (Dead Code Elimination).

‣ Furthermore, the alignment does not introduce significant overhead in terms
of ELF size, nor does it impairs application performance.

Future work:

‣ Loader: A loader that performs deduplication at load time could make µlib
pages point directly to the corresponding frames when loading the kernel
image into main memory.

18

THANK YOU FOR YOUR ATTENTION

QUESTIONS?

