

Elastic Cloud Services: Scaling Snowflake's Control Plane

Themis Melissaris¹, Kunal Nabar¹, Rares Radut¹, Samir Rehmtulla¹, Arthur Shi¹, Samartha Chandrashekar¹, and Ioannis Papapanagiotou².

¹Snowflake, Inc., ²Gemini Trust

© 2022 Snowflake Inc. All Rights Reserve

Snowflake Data Cloud

OUTCOMES

Insights Predictions Monetization Data Products

**

Snowflake Architecture

Elastic Cloud Services: Challenges

- Snowflake workloads
 - Workload duration ranges from seconds to days
 - Spiky, unpredictable workload, requirement to provide (ideally) instant capacity
- Snowflake ECS Architecture
 - Self-managed, no knobs system
 - Enables sub systems to evolve independently
 - VM health decoupled from autoscaling
 - Operating on Multiple Cloud Providers
 - Design guided by providing consistent performance and interfaces
 - Operating at Snowflake scale

Outline

Motivation

- Snowflake Architecture & Background
- ECS Cluster Management
 - Resource lifecycle management at scale
 - Automatic code management (paper)
- Balancing across Availability Zones (paper)
 - Cross-cloud and cross-region Replication (paper)
- Autoscaling & Throttling

ECS multi-versioning

ECS Multi-tenancy

Customer 1 Account

Customer 3 Account

Job

Coordination

766

Coordination

the Free Pool.

Active Clusters

Cluster requires additional capacity.

- Cluster VM is filled from excess capacity in the Free Pool.
- A new VM is provisioned into the Free Pool.

Active Clusters

- Cluster requires additional capacity.
- Cluster VM is filled from excess capacity in the Free Pool.
- A new VM is provisioned into the Free Pool.
- Challenge: Expediting VM fulfillment

- VMs can move into Quarantine when:
 - Sick: ECS instance or host became unhealthy, e.g. OOM
 - Healthy: Cluster has excess capacity

- VMs can move into Quarantine when:
 - Sick: ECS instance or host became unhealthy, e.g. OOM
 - Healthy: Cluster has excess capacity
- Healthy VMs move to Free Pool <u>after</u> restarting the process.

ECS VM ECS VM ECS VM

- VMs can move into Quarantine when:
 - Sick: ECS instance or host became unhealthy, e.g. OOM
 - Healthy: Cluster has excess capacity
- Healthy VMs move to Free Pool <u>after</u> restarting the process.
- Sick VMs move to the Graveyard where they are waiting for release to CSPs.

ECS VM ECS VM ECS VM

- VMs can move into Quarantine when:
 - Sick: ECS instance or host became unhealthy, e.g. OOM
 - Healthy: Cluster has excess capacity
- Healthy VMs move to Free Pool <u>after</u> restarting the process.
- Sick VMs move to the Graveyard where they are waiting for release to CSPs.
- Challenge: Moving VMs with long running jobs into Quarantine

Outline

- Motivation
- Snowflake Architecture & Background
- ECS Cluster Management
 - Resource lifecycle management at scale
 - Automatic code management (paper)
- Balancing across Availability Zones (paper)
 - Cross-cloud and cross-region Replication (paper)
- Autoscaling & Throttling

ECS Autoscaling

- ECS clusters automatically scale horizontally based on aggregated CPU load & throttling rate. Designed to limit cluster oscillations.
- Autoscaling and dynamic throttling work synergistically. Scaling will ingest throttling data as signals to increase the capacity.
- Scale vertically by changing instance type based on memory, OOMs or Jobs killed or when we need more capacity. ECS autoscaler intelligently chooses instance types based on provider capacity.

ECS Autoscaling

- Reduction in OOMs and memory related issues (jobs killed).
- Working to reduce ECS footprint.
 - Ongoing work in predictively scaling clusters prior to hitting resource limits.

ECS OOMs over time

Dynamic Throttling

- Gateways limit ECS backpressure.
- Automatically adjusts ECS gateway size by estimating total allowable jobs after exceeding resource usage thresholds:
 - CPU load
 - Metadata database thread saturation
- General framework that accounts for high variance in job duration.

Dynamic Throttling

 Reduction of >90% in cases of overloaded ECS from consistent high CPU load. Eliminated jobs waiting due to compilation and reduced percentage of jobs with client retries.

- Presented the design and architecture of Snowflake's control plane.
- ECS manages Snowflake at scale and is responsible for VM and cluster lifecycle, health management, self-healing automation, account service placement, traffic control, and resource management.
- Extensive results and additional ECS features in the paper.

Thank you!

© 2022 Snowflake Inc. All Rights Reserved