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from Monolith to Microservices (MS)

» A monolithic application can be divided to a set of light-weight

and loosely-coupled MSs
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> It is easy to manage MS architecture.

Scale MSs independently instead of scaling the whole application.



MS Dependency Graph (DG)

> MS DG of an online service

 Calls between MS triggered a request form a graph.

» End-to-end latency of an online service

« From user sending a request to it receiving the reply.
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Problem

> MS is over-provisioned

* Meet peak resource demand to satisfy service level agreements (SLA)

o The average of resource utilization is less than 10%.



Reactive Auto-scaler

> Use feedback control to tune resources.

» Perform unsatisfactorily under MS frameworks

« Delayed queueing effect.

o MS at the bottom of long MS chain cannot experience the change of workload immediately.

« Scaling each MS requires fetching container images from the repository.

o Take seconds to complete.



Proactive Auto-scaler

> Predict end-to-end latency based on DG. sinanjaspLoS21], DeepRest[EuroSys'22]

> Do not consider two distinct characteristics of MS
* Dynamic DG @ © ®
o Requests from the same online service can go through different sets of MS. ‘

« MS multiplexing
o 5% of MS are shared by 90% of online services. MS Trace Analysis [SoCC'21]

o Online services have different workload pattern and SLA requirement.

> Predict the performance of each individual MS [Our system Madu

 Avoid modelling dynamic DG and shared MS

« Achieving accurate prediction is highly dependent on the knowledge of MS workload.



Challenge

» MS workload is periodic but has varying degrees of uncertainty.

« Uncertainty is the variance of calls per minute (CPM) at the same moment

across different periods.

» Peak workload has higher uncertainty.
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Observations in Workload Uncertainty

» Uncertainty is mainly caused by the dynamic DG

« Uncertainty of non-entering MS at peak workloads is

much higher (2x) than that of entering MS

» Strong data-dependent uncertainty

» Variance of workloads across periods is related to the

mean workload

» Non-uniform workload uncertainty

« Depends on specific dynamic dependencies

* Fine-grained workload prediction for each MS
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Design of Madu

»System overview
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Workload Prediction

» Data-dependent uncertainty learning

 Incorporate data uncertainty into the loss function

» Stochastic attention mechanism

* Input data has similar uncertainty patterns Encoder

Attention

Context Atten-
® tion Weights Ml

» Incorporate uncertainty into final prediction result

Vector

Decoder
n+ 1
t f
Un+1 - n+m
/ CVm

11



Performance Profiling

» Performance metrics

« CPU and memory utilization are much more strongly
correlated with workloads than MS response time.

» Estimate resource usage based on predicted
workload

« CPU and memory utilization of MS containers
grows almost linearly in CPM.
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Utilization Analysis

» Optimal resource allocation

« Minimize the allocated resource based on predefined performance threshold.

min ci(t
c; () eN i (1)

st. goPY(Li(t)[ei(t)) < TEPY,
gMem (Li(t) [ei(t)) < TMem,

c;(t): allocated resource for MS i, g(*): resource utilization estimation, T : predefined threshold



Autoscaling Optimization

» Avoid frequent scaling

» Minimize Scaling overhead

« Target: minimize the scaling containers in the following m interval

« Constraint: guarantee MS performance and ensure high utilization

o p is a parameter that balances the performance and utilization trade-off.

Hi.i‘n i (mz(t + k — 1) — CL’z’(t + k))2
Y k=1
S.t., Cz(t-l-k') S xz(t—i— k‘) S (1 +,0) . Cz(t+ k‘)

c¢;(t): the minimum number of container for MS i in time t
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Experiment Setup

> Benchmark: DeathStarBench

» Cluster: A local K8s cluster with 20 two-socket physical node

> Workload Generated from Alibaba traces

* Traces will be released soon.

> Baseline Schemes

» Reactive auto-scaler:

* Proactive auto-scaler:



Workload Predictor

» Prediction accuracy:

Percentile || ARIMA | Seq2Seq | BNN | DUBNN | Madu
0,50%] 72.1 83.6 | 733 | 744 | 91.1
50%,95% ] 86.1 87.1 39.4 88.7 93.8
(95%,100%] 338.8 89.7 89.2 90.8 91.5
Avg 79.3 87.1 381.3 31.6 92.3

Madu can outperform other baseline schemes by 13.1%.
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Evaluation on All Auto-scaler

» Comparison between different scalers using different applications
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Madu saves up to 40% allocated resource and reduces the end-to-end latency by 36%.
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The Length m of the Lookahead Period

» Trade-off between scalability and performance
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When m =5, the worst end-to-end latency is 10% higher than that under m = 1.
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Summary

» The first to predict data-dependent uncertainty for MS workload

» Proactive auto-scaler leverages workload uncertainty prediction.

» Optimize the scaling overhead and MS performance
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