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Ø A monolithic application can be divided to a set of light-weight 
and loosely-coupled MSs

from Monolith to Microservices (MS)
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Ø It is easy to manage MS architecture.
• Scale MSs independently instead of scaling the whole application. 

Complicated MSs dependencies graph
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Ø MS DG of an online service
• Calls between MS triggered a request form a graph.

Ø End-to-end latency of an online service
• From user sending a request to it receiving the reply.

MS Dependency Graph (DG)
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ØMS is over-provisioned

• Meet peak resource demand to satisfy service level agreements (SLA)

q The average of resource utilization is less than 10%. MS Trace Analysis [SoCC’21]

Problem  
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Ø Use feedback control to tune resources. SHOWAR[SoCC’21], Pema[HPDC’22]

Ø Perform unsatisfactorily under MS frameworks

• Delayed queueing effect. 

q MS at the bottom of long MS chain cannot experience the change of workload immediately.

• Scaling each MS requires fetching container images from the repository.

q Take seconds to complete.  

Reactive Auto-scaler
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Ø Predict end-to-end latency based on DG. Sinan[ASPLOS’21], DeepRest[EuroSys’22]

Ø Do not consider two distinct characteristics of MS 
• Dynamic DG

q Requests from the same online service can go through different sets of MS.

• MS multiplexing
q 5% of MS are shared by 90% of online services. MS Trace Analysis [SoCC’21]

q Online services have different workload pattern and SLA requirement.

Proactive Auto-scaler   
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Ø Predict the performance of each individual MS [Our system Madu]

• Avoid modelling dynamic DG and shared MS

• Achieving accurate prediction is highly dependent on the knowledge of MS workload.
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Ø MS workload is periodic but has varying degrees of uncertainty.

• Uncertainty is the variance of calls per minute (CPM) at the same moment 
across different periods.

• Peak workload has higher uncertainty.

Challenge  
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Ø Strong data-dependent uncertainty 
• Variance of workloads across periods is related to the 

mean workload

Observations in Workload Uncertainty
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ØSystem overview

Design of Madu
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ØData-dependent uncertainty learning
• Incorporate data uncertainty into the loss function 

ØStochastic attention mechanism
• Input data has similar uncertainty patterns

Ø Incorporate uncertainty into final prediction result 

Workload Prediction
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Ø Performance metrics
• CPU and memory utilization are much more strongly 

correlated with workloads than MS response time. 

Performance Profiling 
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Ø Estimate resource usage based on predicted 
workload

• CPU and memory utilization of MS containers 
grows almost linearly in CPM.
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Ø Optimal resource allocation

• Minimize the allocated resource based on predefined performance threshold.

Utilization Analysis 

𝑐!(𝑡): allocated resource for MS 𝑖, 𝑔 ∗ : resource utilization estimation, 𝑇 : predefined threshold
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Ø Avoid frequent scaling

Ø Minimize Scaling overhead
• Target: minimize the scaling containers in the following m interval

• Constraint: guarantee MS performance and ensure high utilization
q 𝜌 is a parameter that balances the performance and utilization trade-off.

Autoscaling Optimization 

𝑐! 𝑡 : the minimum number of container for MS 𝑖 in time 𝑡
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Ø Benchmark: DeathStarBench

Ø Cluster: A local K8s cluster with 20 two-socket physical node 

Ø Workload Generated from Alibaba traces
• Traces will be released soon.

Ø Baseline Schemes
• Reactive auto-scaler: K8S HPA, Google Autopilot[EuroSys’20]

• Proactive auto-scaler: Seq2Seq, DUBNN[NeurIPS’17] , BNN[NeurIPS’19], ARIMA 

Experiment Setup 
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ØPrediction accuracy:

Workload Predictor 

Madu can outperform other baseline schemes by 13.1%. 
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ØComparison between different scalers using different applications 

Evaluation on All Auto-scaler

Madu saves up to 40% allocated resource and reduces the end-to-end latency by 36%.
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ØTrade-off between scalability and performance 

The Length m of the Lookahead Period

When m = 5, the worst end-to-end latency is 10% higher than that under m = 1. 



19

Ø The first to predict data-dependent uncertainty for MS workload

Ø Proactive auto-scaler leverages workload uncertainty prediction.

Ø Optimize the scaling overhead and MS performance

Summary
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