The Power of Prediction: Microservice Auto Scaling
via Workload Learning

Shutian Luo™ 23 Huanle Xu™ 3, Kejiang Ye',
Guoyao Xu?, Liping Zhang*, Guodong Yang* and Chengzhong Xu?3

ISIAT, CAS
2University of CAS

3University of Macau
“Alibaba Group

' Outline

»Background

»Problem and Challenges
»>Design of Madu

»>Evaluation

»Summary

from Monolith to Microservices (MS)

» A monolithic application can be divided to a set of light-weight

and loosely-coupled MSs

Web Ul

el

customer |
service

(©)

\

b Product service

Cart service!

=

Single Intance

{;ﬂ Orreation
8g? .
Containers g\

Cart serwce - —
\j % Delivery Data ~ User Da } Store Data Trading Data Iltem Data Bill Inlomation
o o 3
ffffffffffffffff =) . |
f AT Complicated MSs dependencies graph

> It is easy to manage MS architecture.

Scale MSs independently instead of scaling the whole application.

MS Dependency Graph (DG)

> MS DG of an online service

 Calls between MS triggered a request form a graph.

» End-to-end latency of an online service

« From user sending a request to it receiving the reply.

_____________ W@bIB@qye__s_t_______

(O Stateless service

Stateful service

() Database
i | O Memcached

E —

.| =-—= |PC
.| === RPC

MQ

Problem

> MS is over-provisioned

* Meet peak resource demand to satisfy service level agreements (SLA)

o The average of resource utilization is less than 10%.

Reactive Auto-scaler

> Use feedback control to tune resources.

» Perform unsatisfactorily under MS frameworks

« Delayed queueing effect.

o MS at the bottom of long MS chain cannot experience the change of workload immediately.

« Scaling each MS requires fetching container images from the repository.

o Take seconds to complete.

Proactive Auto-scaler

> Predict end-to-end latency based on DG. sinanjaspLoS21], DeepRest[EuroSys'22]

> Do not consider two distinct characteristics of MS
* Dynamic DG @ © ®
o Requests from the same online service can go through different sets of MS. ‘

« MS multiplexing
o 5% of MS are shared by 90% of online services. MS Trace Analysis [SoCC'21]

o Online services have different workload pattern and SLA requirement.

> Predict the performance of each individual MS [Our system Madu

 Avoid modelling dynamic DG and shared MS

« Achieving accurate prediction is highly dependent on the knowledge of MS workload.

Challenge

» MS workload is periodic but has varying degrees of uncertainty.

« Uncertainty is the variance of calls per minute (CPM) at the same moment

across different periods.

» Peak workload has higher uncertainty.

s 7 s - —— The mean
E') 0.8 83 0.8 Uncertainty
5 0.6 rz>éo.6'
50.4- NN —~ 0.4
= =

0.21]
A J 0.2

o0+ — —— 0= : :

2 4 6 8 10 12 14 0 500 1000

Day Time (min)

Observations in Workload Uncertainty

» Uncertainty is mainly caused by the dynamic DG

« Uncertainty of non-entering MS at peak workloads is

much higher (2x) than that of entering MS

» Strong data-dependent uncertainty

» Variance of workloads across periods is related to the

mean workload

» Non-uniform workload uncertainty

« Depends on specific dynamic dependencies

* Fine-grained workload prediction for each MS

c]
=05

> 0.6
]

)
5 0.41
§0.3<
E 0.2
U O.l‘

0.01

é-

Entéring Others

Microservices

20.4]
<

£0.31
Q
O

€ 0.2
>

= 0.11
O

0.0

P s

[0,25%] [25%.50%] [50%,75%][75%,100%)]

(@)

CPM Interval

0.321
> B,O.BO*
< 0.307 £0.281
S S
é 0.281 § 0.261
S 0.261 S 0.24+
s s 0.221
& 0241 S 0.201

0.22 : : : : : : o8+

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2 4 6 8 10 12 14 16

Invocation Probability * Invocation Times (1071) The value of indegree

(b)
9

Design of Madu

»System overview

Microservice
Deployment Controller
Pod 1 Pod2 SRR Pod N

__

Onllne

Online Workload
Services Prediction

__

, Offlme

Workload . Performance
Workload " Runtime "
Prediction . —> Profiling
Traces Indicators
Model Model

Workload Prediction

» Data-dependent uncertainty learning

 Incorporate data uncertainty into the loss function

» Stochastic attention mechanism

* Input data has similar uncertainty patterns Encoder

Attention

Context Atten-
® tion Weights Ml

» Incorporate uncertainty into final prediction result

Vector

Decoder
n+ 1
t f
Un+1 - n+m
/ CVm

11

Performance Profiling

» Performance metrics

« CPU and memory utilization are much more strongly
correlated with workloads than MS response time.

» Estimate resource usage based on predicted
workload

« CPU and memory utilization of MS containers
grows almost linearly in CPM.

1.0

0.8
w 0.6

(@)

©0.41
0.2]

0.0

-1 -0.8

-- Network Throughput CPU Util _
—— Response Time —-— Disk Util =
Memory Util

o= emme

06 04 02 0 02 04 06 08 1
Spearman Correlation with CPM

— CPU Predicted CPU +— Memory Predicted Memory

X X

2 701 >

S 607 5601

-+ -

5% 5

2 30 2 401

220 o

3 3 30,

ﬁ 10 ‘ ‘ | | | 5 ‘ | | | |

o 10 15 20 25 30 < 10 15 20 25 30
CPM (*102) CPM (*102)

(a)MS from Alibaba traces (b)MS from DeathStarBench

Utilization Analysis

» Optimal resource allocation

« Minimize the allocated resource based on predefined performance threshold.

min ci(t
c; () eN i (1)

st. goPY(Li(t)[ei(t)) < TEPY,
gMem (Li(t) [ei(t)) < TMem,

c;(t): allocated resource for MS i, g(*): resource utilization estimation, T : predefined threshold

Autoscaling Optimization

» Avoid frequent scaling

» Minimize Scaling overhead

« Target: minimize the scaling containers in the following m interval

« Constraint: guarantee MS performance and ensure high utilization

o p is a parameter that balances the performance and utilization trade-off.

Hi.i‘n i (mz(t + k — 1) — CL’z’(t + k))2
Y k=1
S.t., Cz(t-l-k') S xz(t—i— k‘) S (1 +,0) . Cz(t+ k‘)

c¢;(t): the minimum number of container for MS i in time t

14

Experiment Setup

> Benchmark: DeathStarBench

» Cluster: A local K8s cluster with 20 two-socket physical node

> Workload Generated from Alibaba traces

* Traces will be released soon.

> Baseline Schemes

» Reactive auto-scaler:

* Proactive auto-scaler:

Workload Predictor

» Prediction accuracy:

Percentile || ARIMA | Seq2Seq | BNN | DUBNN | Madu
0,50%] 72.1 83.6 | 733 | 744 | 91.1
50%,95%] 86.1 87.1 39.4 88.7 93.8
(95%,100%] 338.8 89.7 89.2 90.8 91.5
Avg 79.3 87.1 381.3 31.6 92.3

Madu can outperform other baseline schemes by 13.1%.

16

Evaluation on All Auto-scaler

» Comparison between different scalers using different applications

s Madu I HPA Autopilot WS DUBNN |@EE BNN BN Seq2Seq I ARIMA
v 2.00 7
Q >
(@] 175' (@) 6
o @
O 1.251 -
o 1. 54
§ 1.00; I
= (.75 o3
€ 0.50- S 2
O =2
Z 0.251 1
0.00- 0

Media Social Hotel _ Media Social Hotel
(a) (b)

Madu saves up to 40% allocated resource and reduces the end-to-end latency by 36%.

17

The Length m of the Lookahead Period

» Trade-off between scalability and performance

:3.0
O
= . 1.20
g 2.51 é
= 1.15
> b
T 2.0 T
S K110
M©
g £
N 1.51 5 1.05
g =
2 1.0 1.00
2 4 6 8 10 2 4 6 8 10
The value of m The value of m

When m =5, the worst end-to-end latency is 10% higher than that under m = 1.

18

Summary

» The first to predict data-dependent uncertainty for MS workload

» Proactive auto-scaler leverages workload uncertainty prediction.

» Optimize the scaling overhead and MS performance

Q&A
THANKS

Email: st.luo@siat.ac.cn

