The Power of Prediction: Microservice Auto Scaling via Workload Learning

Shutian Luo^{* 1,2,3}, Huanle Xu^{* 3}, Kejiang Ye¹, Guoyao Xu⁴, Liping Zhang⁴, Guodong Yang⁴ and Chengzhong Xu³

> ¹SIAT, CAS ²University of CAS ³University of Macau ⁴Alibaba Group

Background

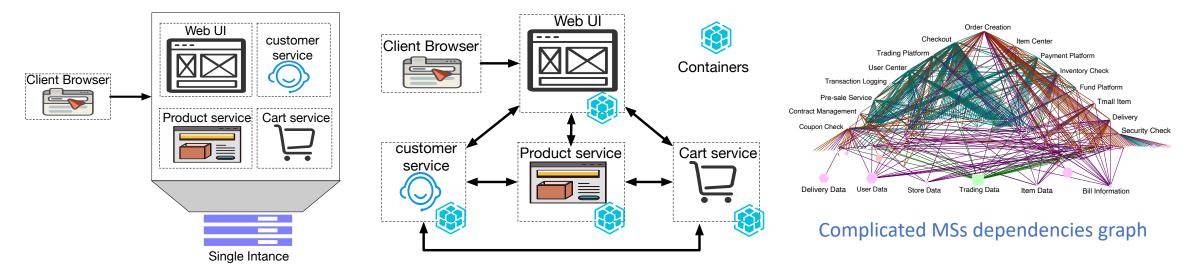
>Problem and Challenges

>Design of Madu

Evaluation

from Monolith to Microservices (MS)

> A monolithic application can be divided to a set of light-weight and loosely-coupled MSs

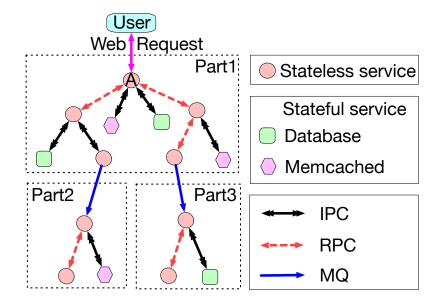


- > It is easy to manage MS architecture.
 - Scale MSs independently instead of scaling the whole application.

MS Dependency Graph (DG)

> MS DG of an online service

- Calls between MS triggered a request form a graph.
- > End-to-end latency of an online service
 - From user sending a request to it receiving the reply.



> MS is over-provisioned

• Meet peak resource demand to satisfy service level agreements (SLA)

□ The average of resource utilization is less than 10%. MS Trace Analysis [SoCC'21]

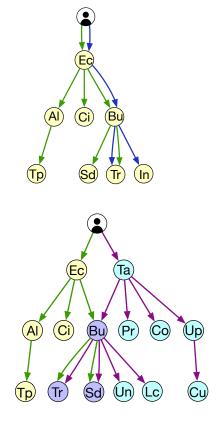
> Use feedback control to tune resources. SHOWAR[SoCC'21], Pema[HPDC'22]

> Perform unsatisfactorily under MS frameworks

- Delayed queueing effect.
 - □ MS at the bottom of long MS chain cannot experience the change of workload immediately.
- Scaling each MS requires fetching container images from the repository.
 - Take seconds to complete.

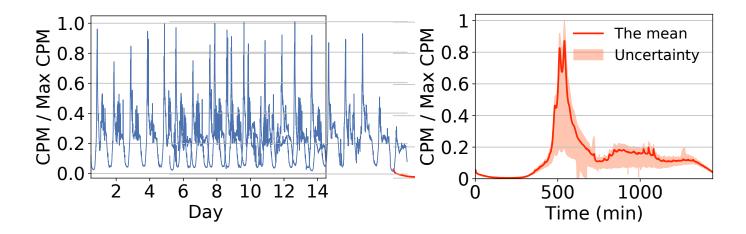
Proactive Auto-scaler

- Predict end-to-end latency based on DG. Sinan[ASPLOS'21], DeepRest[EuroSys'22]
- > Do not consider two distinct characteristics of MS
 - Dynamic DG
 - Requests from the same online service can go through different sets of MS.
 - MS multiplexing
 - 5% of MS are shared by 90% of online services. MS Trace Analysis [SoCC'21]
 - Online services have different workload pattern and SLA requirement.
- > Predict the performance of each individual MS [Our system Madu]
 - Avoid modelling dynamic DG and shared MS
 - Achieving accurate prediction is highly dependent on the knowledge of MS workload.



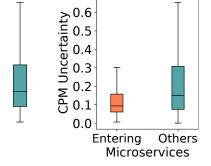
> MS workload is periodic but has varying degrees of uncertainty.

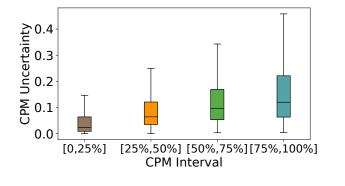
- Uncertainty is the variance of calls per minute (CPM) at the same moment across different periods.
- Peak workload has higher uncertainty.

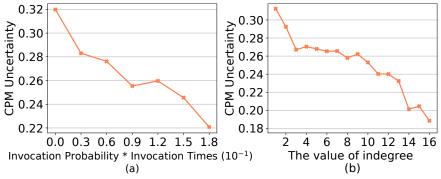


Observations in Workload Uncertainty

- > Uncertainty is mainly caused by the dynamic DG
 - Uncertainty of non-entering MS at peak workloads is much higher (2×) than that of entering MS
- Strong data-dependent uncertainty
 - Variance of workloads across periods is related to the mean workload
- > Non-uniform workload uncertainty
 - Depends on specific dynamic dependencies
 - Fine-grained workload prediction for each MS

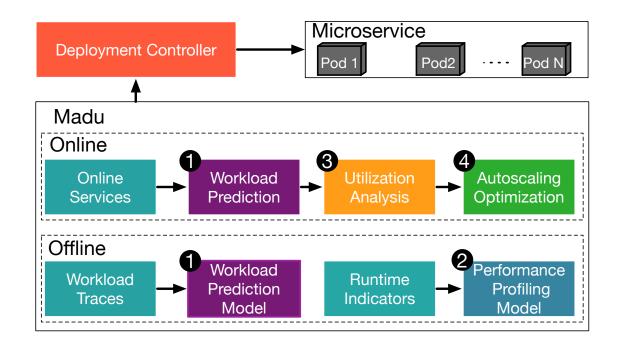






Design of Madu

>System overview

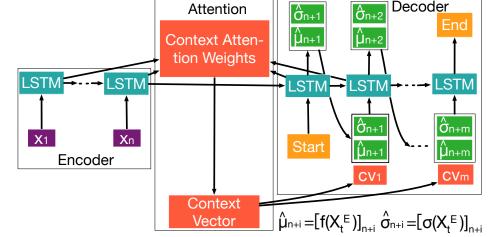


Workload Prediction

> Data-dependent uncertainty learning

• Incorporate data uncertainty into the loss function

- > Stochastic attention mechanism
 - Input data has similar uncertainty patterns

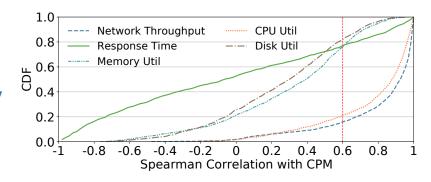


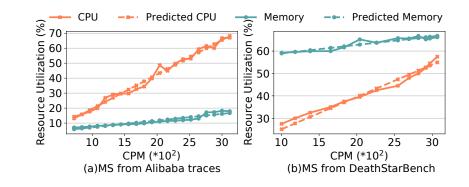
> Incorporate uncertainty into final prediction result

Performance Profiling

- > Performance metrics
 - CPU and memory utilization are much more strongly correlated with workloads than MS response time.

- Settimate resource usage based on predicted workload
 - CPU and memory utilization of MS containers grows almost linearly in CPM.





Utilization Analysis

- > Optimal resource allocation
 - Minimize the allocated resource based on predefined performance threshold.

$$\min_{\substack{c_i(t) \in \mathcal{N} \\ \text{s.t.}}} c_i(t)$$
s.t.
$$g_i^{CPU} (L_i(t)/c_i(t)) \leq T_i^{CPU},$$

$$g_i^{Mem} (L_i(t)/c_i(t)) \leq T_i^{Mem},$$

 $c_i(t)$: allocated resource for MS *i*, g(*): resource utilization estimation, T: predefined threshold

Autoscaling Optimization

> Avoid frequent scaling

> Minimize Scaling overhead

- Target: minimize the scaling containers in the following m interval
- Constraint: guarantee MS performance and ensure high utilization

 \circ ρ is a parameter that balances the performance and utilization trade-off.

$$\min_{\boldsymbol{x}_{i}} \sum_{k=1}^{m} \left(x_{i}(t+k-1) - x_{i}(t+k) \right)^{2}$$

s.t., $c_{i}(t+k) \leq x_{i}(t+k) \leq (1+\rho) \cdot c_{i}(t+k)$

 $c_i(t)$: the minimum number of container for MS i in time t

Experiment Setup

- > Benchmark: DeathStarBench
- > Cluster: A local K8s cluster with 20 two-socket physical node
- > Workload Generated from Alibaba traces
 - Traces will be released soon.
- > Baseline Schemes
 - Reactive auto-scaler: K8S HPA, Google Autopilot[EuroSys'20]
 - Proactive auto-scaler: Seq2Seq, DUBNN[NeurIPS'17], BNN[NeurIPS'19], ARIMA

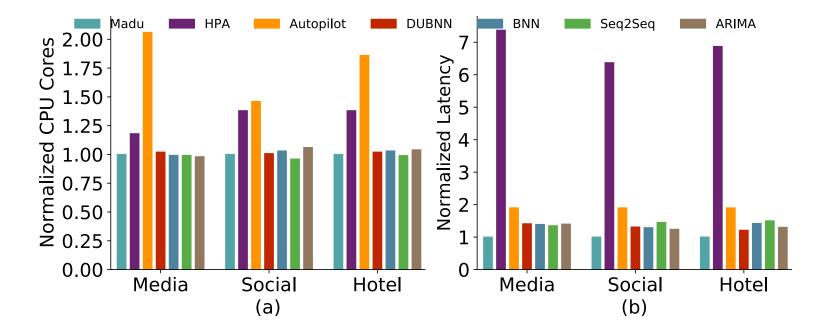
> Prediction accuracy:

Percentile	ARIMA	Seq2Seq	BNN	DUBNN	Madu
[0,50%]	72.1	83.6	73.3	74.4	91.1
[50%,95%]	86.1	87.1	89.4	88.7	93.8
[95%,100%]	88.8	89.7	89.2	90.8	91.5
Avg	79.3	87.1	81.3	81.6	92.3

Madu can outperform other baseline schemes by 13.1%.

Evaluation on All Auto-scaler

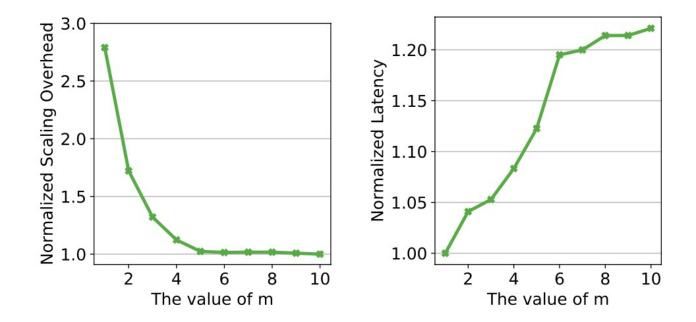
Comparison between different scalers using different applications



Madu saves up to 40% allocated resource and reduces the end-to-end latency by 36%.

The Length *m* of the Lookahead Period

>Trade-off between scalability and performance



When m = 5, the worst end-to-end latency is 10% higher than that under m = 1.

> The first to predict data-dependent uncertainty for MS workload

> Proactive auto-scaler leverages workload uncertainty prediction.

> Optimize the scaling overhead and MS performance

Q&A

THANKS

Email: st.luo@siat.ac.cn

