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Managing SLOs in Serverless Platforms
• Meeting Service-level Objectives (SLOs) is critical to the success of a serverless platform, 

especially for user-facing applications
• Today, performance SLOs are not supported yet in Serverless (FaaS)

• Providing per-function performance-wise SLO agreements
• Customers agree for the vendor to manage the resources provided so long as SLOs are met (e.g., 

latency)
• Both customers and vendor potentially benefit from meeting the SLOs

2

User-facing Services

FaaS Platforms

Monthly Uptime
Percentage ≥ 99.95%



Managing SLOs in Serverless Platforms
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Need for Lower
latency

Desire for Higher utilization,
Higher profit

Customers FaaS Provider

Tension between Provider and Customers

Challenge: Optimizing for diverse workloads to meet SLO constraints 
while efficiently multiplexing shared resources

[Qiu, WoSC 2021] Is Function-as-a-Service a Good Fit for Latency-Critical Services?
In Proceedings of the 7th International Workshop on Serverless Computing (WoSC7) Co-located with ACM Middleware 2021
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Serverless computing provides a unique opportunity!



ML-managed SLO-driven Cloud Services
• Why ML?: Heuristics-based resource management are inefficient and not tenable

• Providers dynamically manage orchestration platforms to achieve efficiency as cloud evolves
• Contributions:

• SIMPPO: Automate the management for diverse workloads with reinforcement learning (RL)
• Quantitative characterization study of existing RL approaches
• A system that orchestrates multiple learning-based agents to achieve optimal resource allocation 

in the task of multidimensional container autoscaling
• Key Idea: “Virtual Agent” and mean-field theory
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Wait! My RL solutions fail in production?
• Existing RL solutions: A single RL agent in an isolated environment or single-agent RL

• DeepRM [HotNets ’16], MIRAS [ICDCS ’19], FIRM [OSDI ’20], Symphony [ICML ’20], ADRL [TPDS 
’20], Q-learning-based Autoscaler [CCGrid ’21], SOL [ASPLOS ’22], …

• Not yet ready in production systems

• RL assumes that the underlying environment is stationary

• Not true anymore! from each RL agent’s perspective when multiple self-interested RL agents 
are added to manage diverse function workloads
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A Naïve Multi-agent RL (MARL) Solution
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• Joint Action Learner (JAL): A centralized policy for all the agents is trained
• Input: the concatenation of the observations of all the agents
• Output: the joint actions specified to the all agents

• Eliminates the problem of non-stationarity (theoretically)
• Allows for joint training and joint inference

• Computationally inefficient with exponential complexity

• Retraining from scratch needed for any agent group changes

Performance Isolation?

Scalability?

Incremental Retraining?

Multi-agent
Environment

Joint State & Reward

…

…

When a new 
agent joins…

Joint Action …
𝐴!

𝑆!

𝐴!

𝑆!

𝐴!

𝑆!

Design Principles



Rethinking the MARL Model
• What can we do about the changing agent group?

• For each agent, we treat the other agents as part of the environment

• Virtual agent = Environment + All Other Agents
• Many-agent problem converted to a two-agent problem
• Agnostic to agent sequence order or the number of agents  ->  Incremental Retraining

• Neural network architecture redesigned
• No need to reconstruct the neural network (structure remains unchanged)
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Virtual Agent State Estimation
• Model the collective behavior of virtual agent via an auxiliary global state distribution

• Aggregated actions and resource limits to represent the collective resource allocation
• Average function performance and resource utilization to indicate how the virtual agent behaves

• Provided to each agent to learn the collective and average behavior of the virtual agent instead of all 
the other individual agents  ->  Scalability

9

𝐴$: Action
𝑂$: Observation
𝑅: Reward
𝐺$: Global states
𝜋$: Policy (actor)
𝑉$: Value function 
(critic)

Multi-tenant/agent Serverless Environment
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Mean-field Theory: 
Modeling the collective 
behavior of N agents by the 
mean-field states provides 
tractable and accurate 
approximation of the actual 
N-agent scenario1

[Mao & Qiu, NeurIPS 2022]

1 Weichao Mao, Haoran Qiu, et. al. A Mean-Field Game Approach to Cloud Resource Management with Function Approximation.

𝐺)

Auxiliary
States for 
Agent 1

𝑆# = 𝑂# + 𝐺#

Virtual Agent



SIMPPO: Scalable and Incremental MARL
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• Two building blocks of SIMPPO
• Virtual agent
• Auxiliary global system states

• Applied SIMPPO to multi-dimensional autoscaling of serverless 
platforms
• Based on the state-of-the-art RL algorithm – PPO (Proximal 

Policy Optimization)
• Serverless platform: OpenWhisk

• Evaluated SIMPPO on 12 open-source serverless benchmarks
• Function invocation patterns from Azure Functions traces

• RQ1: Incremental training?

• RQ2: Online policy-serving performance?



SIMPPO Incremental (Re)Training
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Training curves of 
SIMPPO in multi-agent 
environment:
• Continuously reaching 

the convergence after 
incremental retraining

Does SIMPPO converge and support incremental training? What is the value of the 
auxiliary global system states?

16.6% 11.3%

Ep 800 Ep 1600 Ep 2400 Ep 3200
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SIMPPO Online Performance
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• SIMPPO provides online policy-serving performance comparable to single-agent RL in 
isolation (the baseline), with the performance degradation <9.2%

• In multi-tenant/agent environments:
• SIMPPO achieves 2x-4.4x improvement compared to single-agent RL
• SIMPPO has 21.4x less performance degradation compared to a threshold-based 

approach ENSURE (ACSOS 2020)

Benchmark Serverless Functions

3.0x
3.2x

4.2x
2.8x

4.1x 2.9x 2.0x
2.1x

3.5x 3.2x

4.3x
4.4x



Final Words
• SLO management in serverless platforms is critical but challenging!

• Serverless provides the unique opportunity of optimization of resources
• Incorporating performance-wise SLO/SLA in the pricing model?

• SIMPPO: Scalable and incremental multi-agent RL framework based on PPO
• Key idea: Virtual agent and auxiliary global system states
• Able to train to convergence and achieves performance isolation

• Limitations and Future Work
• Incorporating resilience management

• Fault tolerance (e.g., agent state transition loss, agent disconnection)
• Consideration of serverless function chains or function graphs (DAGs)
• Stay tuned: Multidimensional Pod Autoscaler in Kubernetes

• RL-based Autoscaler for general Kubernetes deployment
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Thank you!
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• Check out the extended version of the paper for more details: https://haoran-qiu.com/pdf/simppo-extended.pdf

• Check out our paper published at NeurIPS 2022 for the theoretical results: https://haoran-qiu.com/pdf/nips22.pdf

https://haoran-qiu.com/pdf/simppo-extended.pdf
https://haoran-qiu.com/pdf/simppo-extended.pdf
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ML-managed SLO-driven Cloud Services
• Why ML?: Heuristics-based resource management are inefficient and not tenable

• Providers dynamically manage orchestration platforms to achieve efficiency as cloud evolves
• SIMPPO: Novel ML-driven solutions to automate the management of serverless platforms for diverse 

customer workloads with reinforcement learning (RL)
• A system that orchestrates multiple learning-based agents to achieve optimality
• Provides a theoretical foundation for generalization and evolution of SIMPPO (NeurIPS 2022)
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Central Idea: Minimize SLO violations by using the means of multi-dimensional workload distributions. 
Each dimension represents a key system attribute (e.g., resource utilization, tail latency).



Motivating Examples
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Environment

Agent-1
𝜋%!

𝜋%"
Agent-2𝐴!: cpu.shares += 256

𝑆!, 𝑅!, %cpu.shares = &'(
#)&*

𝑆!, 𝑅!, %cpu.shares = &'(
#)&*

Environment
Agent-1
𝜋%!

𝑆!"#, 𝑅!"#
%cpu.shares = '#&

#+,&

𝑆!"#, 𝑅!"#, %cpu.shares = +(-
#+,&

𝜋%"
Agent-2

Agent-1
𝜋%!

𝜋%"
Agent-2

𝑆!, 𝑅!, 𝐴!: Add a 256M-container

𝑆!, 𝑅!, 𝐴!: Remove a 128M-container

Environment
(128 MB left)

Agent-1
𝜋%!

𝑆!"#, 𝑅!"#, Added to another node

𝑆!"#, 𝑅!"#

𝜋%"
Agent-2

Environment
(256 MB left)

Example
#1

Example
#2

🤯

𝐴!: cpu.shares += 512

🤯

🤯
Denote that current
state is undesired

𝝅𝜽: RL Policy
𝑺𝒕: State at time t

: RL agent (per Function) : RL transitions : 𝑨𝒕: Action at time t
𝑹𝒕: Reward at time t



Deeper Dive into the Popular Single-agent RL Design
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App + Platform
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R

RR

R
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I. Training

II. Serving

Policy Improvement

Policy Evaluation

Model

R: Denotes the requests to the function managed by the RL agent.

PolicyData 
Collector

RL Pipeline

[FIRM, 2020 OSDI]

+/- Replicas
Resize containers

RL Proxy

Check out our paper for more Details!



Single-agent RL Design
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𝑅, = 𝛼 & 𝑅𝑈, + 𝛽 & 𝑆𝑃, + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

Resource Util
SLO Preservation

𝑆𝑃! = min(
𝑆𝐿𝑂 𝐿𝑎𝑡𝑒𝑛𝑐𝑦
𝐴𝑐𝑡𝑢𝑎𝑙 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 , 1)

Penalize illegal or undesired actions
• Frequent dangling decisions
• Scale in/up/down when 𝑁𝐶! = 0

• RL Algorithms: PPO (Proximal Policy Optimization)
• A policy gradient method and the default RL algorithm in OpenAI

• State Space: SLO Preservation Ratio (𝑆𝑃$), Resource Utilization (𝑅𝑈$(𝐶𝑃𝑈,𝑚𝑒𝑚)), Arrival Rate 
Changes (𝐴𝐶$), Resource Limits (𝑅𝐿𝑇$(𝐶𝑃𝑈,𝑚𝑒𝑚)), Horizontal Concurrency (𝑁𝐶$)

• Action Space:
• Vertical scaling: +/- a STEP_SIZE of the resource limits

• 𝑎𝑣! = ∆𝑅𝐿𝑇! 𝐶𝑃𝑈,𝑚𝑒𝑚
• Horizontal scaling: +/- a STEP_SIZE of the number of function containers

• 𝑎ℎ! = ∆𝑁𝐶!
• Reward Function:



Single-agent RL Evaluation on 12 FaaS Benchmarks
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No convergence with multiple agents
- agents not aware of each other

Single-agent RL trained in isolation
achieves convergence

Training in Isolation

Online Performance

Training with Multiple Agents

Benchmark Serverless Functions

3.1x
3.4x

4.6x

2.8x

4.2x

Independently trained 
RL agents result in 2.1x 
to 4.8x (up to 80%) 
function execution 
latency degradation

2.2x3.2x
2.1x

3.7x 3.3x

4.8x 4.6x



Moving to Multi-agent RL (MARL)
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• Our approach: Providing system support that enables multiple RL-based controllers to 
coexist
• Performance Isolation

• During training: Converges to a collectively optimal policy
• During execution: Achieves comparable performance to single-agent RL in isolation

• Scalability
• Challenge: In a multi-tenant serverless FaaS platform, new functions can be 

increasingly registered
• Incremental training/retraining (adaptability)

• Challenge: Functions can be registered/removed/updated at any time, changing the 
joint state space



SIMPPO Online Inference
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Multi-tenant/agent Serverless Environment

𝜋!

Agent 1

𝐴! 𝑆!

𝑅, 𝑂!𝐴!

𝜋"

Agent 2

𝐴" 𝑆"

𝑅, 𝑂"𝐴"

𝜋#

Agent N

𝐴# 𝑆#

𝑅, 𝑂#𝐴#

• Each RL agent is plug-and-play onto different servers

• Scalable state & action space: agent trained w/ X agents applicable to scenarios w/ Y agents
• Zero values for empty RL agent slots
• Other RL agents treated as part of the environment → agent-order-agnostic

• Observations from all other agents (aggregated/averaged values)

𝐺) … …
𝐴$: Action
𝑂$: Observation
𝑅: Reward
𝐺$: Global states
𝜋$: Policy (actor)
𝑉$: Value function 
(critic)



SIMPPO Neural Network Model architecture
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Environment State (𝑠!)

Individual States (𝐼!) Mean-field States (𝐿!)

…

…

Action (𝑎!)

𝑉.(𝑠/)

…

…

Vertical Horizontal

Parameter
Update

Actor Network Critic Network

• Model architecture



Other Use Cases
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ActionsApp #1
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• SIMPPO as a general framework to support a variety of RL agents 
that employ online learning algorithms

• Assumptions / Pre-conditions:
• Conflicts between agents in a shared environment
• Visibility of the states of the other agents
• Agent coming from the same distribution (same task + reward)

• Use cases:
• RL-based serverless resource management

• This work
• RL-based network flow congestion control (Aurora, ICML 2019)

• Shared network bandwidth
• RL-based video adaptation (streaming) (ABRL, ICML 2019)

• Shared network and video content server
• RL-based job scheduler (Decima, SIGCOMM 2019)

• Shared cluster resources and low-level task scheduler (queues)
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• As the # of functions increases from 5 to 110, 
the reward drop % first increases and then 
decreases after the # of functions is >20.

• The retraining time has similar trends, as 
retraining is done until the per-episode reward 
converges to a stable value.

• As the number of functions increases to 110, 
the reward drop % and the retraining cost 
decrease to 3.0% and 47.2 training episodes.

RQ: Is SIMPPO scalable with respect to converged rewards, online policy-serving 
performance, and retraining time?


