
SIMPPO: A Scalable Online Learning Framework for
Serverless Resource Management

Haoran Qiu1, Weichao Mao1, Archit Patke1, Chen Wang2, Hubertus Franke2

Zbigniew T. Kalbarczyk1, Tamer Basar1, Ravishankar K. Iyer1

1 UIUC 2 IBM Research

Managing SLOs in Serverless Platforms
• Meeting Service-level Objectives (SLOs) is critical to the success of a serverless platform,

especially for user-facing applications
• Today, performance SLOs are not supported yet in Serverless (FaaS)

• Providing per-function performance-wise SLO agreements
• Customers agree for the vendor to manage the resources provided so long as SLOs are met (e.g.,

latency)
• Both customers and vendor potentially benefit from meeting the SLOs

2

User-facing Services

FaaS Platforms

Monthly Uptime
Percentage ≥ 99.95%

Managing SLOs in Serverless Platforms

3

Need for Lower
latency

Desire for Higher utilization,
Higher profit

Customers FaaS Provider

Tension between Provider and Customers

Challenge: Optimizing for diverse workloads to meet SLO constraints
while efficiently multiplexing shared resources

[Qiu, WoSC 2021] Is Function-as-a-Service a Good Fit for Latency-Critical Services?
In Proceedings of the 7th International Workshop on Serverless Computing (WoSC7) Co-located with ACM Middleware 2021

Managing SLOs in Serverless Platforms

4

Need for Lower
latency

Desire for Higher utilization,
Higher profit

Customers FaaS Provider

Tension between Provider and Customers

Challenge: Optimizing for diverse workloads to meet SLO constraints
while efficiently multiplexing shared resources

[Qiu, WoSC 2021] Is Function-as-a-Service a Good Fit for Latency-Critical Services?
In Proceedings of the 7th International Workshop on Serverless Computing (WoSC7) Co-located with ACM Middleware 2021

Serverless computing provides a unique opportunity!

ML-managed SLO-driven Cloud Services
• Why ML?: Heuristics-based resource management are inefficient and not tenable

• Providers dynamically manage orchestration platforms to achieve efficiency as cloud evolves
• Contributions:

• SIMPPO: Automate the management for diverse workloads with reinforcement learning (RL)
• Quantitative characterization study of existing RL approaches
• A system that orchestrates multiple learning-based agents to achieve optimal resource allocation

in the task of multidimensional container autoscaling
• Key Idea: “Virtual Agent” and mean-field theory

5

State 𝑆! , Rewards 𝑅!

Environment

Policy 𝜋" Action 𝐴!
Function

Controls

RL-based Multidimensional Container Autoscaling
(Modeled as a Markov Decision Process)

Vertical Scaling

Horizontal Scaling

Wait! My RL solutions fail in production?
• Existing RL solutions: A single RL agent in an isolated environment or single-agent RL

• DeepRM [HotNets ’16], MIRAS [ICDCS ’19], FIRM [OSDI ’20], Symphony [ICML ’20], ADRL [TPDS
’20], Q-learning-based Autoscaler [CCGrid ’21], SOL [ASPLOS ’22], …

• Not yet ready in production systems

• RL assumes that the underlying environment is stationary

• Not true anymore! from each RL agent’s perspective when multiple self-interested RL agents
are added to manage diverse function workloads

6

On receiving 𝑆!"#, was it
caused by my action 𝐴!?

Single-agent RL:
• Not aware of the other agents
• Trained independently

Environment

State 𝑆! , Rewards 𝑅!

Policy 𝜋" Action 𝐴!

Function A

Controls Policy 𝜋"!

Policy 𝜋""

Policy 𝜋"#

Actions 𝐴!#, 𝐴!$, 𝐴!%

Shared
Environment

A Naïve Multi-agent RL (MARL) Solution

7

• Joint Action Learner (JAL): A centralized policy for all the agents is trained
• Input: the concatenation of the observations of all the agents
• Output: the joint actions specified to the all agents

• Eliminates the problem of non-stationarity (theoretically)
• Allows for joint training and joint inference

• Computationally inefficient with exponential complexity

• Retraining from scratch needed for any agent group changes

Performance Isolation?

Scalability?

Incremental Retraining?

Multi-agent
Environment

Joint State & Reward

…

…

When a new
agent joins…

Joint Action …
𝐴!

𝑆!

𝐴!

𝑆!

𝐴!

𝑆!

Design Principles

Rethinking the MARL Model
• What can we do about the changing agent group?

• For each agent, we treat the other agents as part of the environment

• Virtual agent = Environment + All Other Agents
• Many-agent problem converted to a two-agent problem
• Agnostic to agent sequence order or the number of agents -> Incremental Retraining

• Neural network architecture redesigned
• No need to reconstruct the neural network (structure remains unchanged)

8

Abstracted away internal
complexities

How to model and estimate the
virtual agent to cover the collective
dynamics?

State 𝑆!
Rewards 𝑅!

Shared
Environment

Policy 𝜋" Action 𝐴!

Policy 𝜋"!

Policy 𝜋""

Policy 𝜋"#

Function A

Controls
Actions 𝐴!#, 𝐴!$, 𝐴!%

…

Virtual
Agent

Virtual Agent State Estimation
• Model the collective behavior of virtual agent via an auxiliary global state distribution

• Aggregated actions and resource limits to represent the collective resource allocation
• Average function performance and resource utilization to indicate how the virtual agent behaves

• Provided to each agent to learn the collective and average behavior of the virtual agent instead of all
the other individual agents -> Scalability

9

𝐴$: Action
𝑂$: Observation
𝑅: Reward
𝐺$: Global states
𝜋$: Policy (actor)
𝑉$: Value function
(critic)

Multi-tenant/agent Serverless Environment

𝜋!

𝐴! 𝑆!

𝑉!

𝑅, 𝑂!𝐴!

𝜋"

Agent 2

𝐴" 𝑆"

𝑉"

𝑅, 𝑂"𝐴"

𝜋#

Agent N

𝐴# 𝑆#

𝑉#

𝑅, 𝑂#𝐴#

…

Agent 1
Mean-field Theory:
Modeling the collective
behavior of N agents by the
mean-field states provides
tractable and accurate
approximation of the actual
N-agent scenario1

[Mao & Qiu, NeurIPS 2022]

1 Weichao Mao, Haoran Qiu, et. al. A Mean-Field Game Approach to Cloud Resource Management with Function Approximation.

𝐺)

Auxiliary
States for
Agent 1

𝑆# = 𝑂# + 𝐺#

Virtual Agent

SIMPPO: Scalable and Incremental MARL

10

States
Rewards

Resource Scaling

App #3
RL Agent #3

Resource Scaling
Executor

ActionsApp #2
RL Agent #2

Resource Scaling
Executor

ActionsApp #1

RL Agent #1

Resource Scaling
Executor

Actions

SIMPPO

Controller

Monitor
FaaS Platform

• Two building blocks of SIMPPO
• Virtual agent
• Auxiliary global system states

• Applied SIMPPO to multi-dimensional autoscaling of serverless
platforms
• Based on the state-of-the-art RL algorithm – PPO (Proximal

Policy Optimization)
• Serverless platform: OpenWhisk

• Evaluated SIMPPO on 12 open-source serverless benchmarks
• Function invocation patterns from Azure Functions traces

• RQ1: Incremental training?

• RQ2: Online policy-serving performance?

SIMPPO Incremental (Re)Training

11

Training curves of
SIMPPO in multi-agent
environment:
• Continuously reaching

the convergence after
incremental retraining

Does SIMPPO converge and support incremental training? What is the value of the
auxiliary global system states?

16.6% 11.3%

Ep 800 Ep 1600 Ep 2400 Ep 3200

Primes
Base6

4 M2H
Sentim

ent

Image-
Resize

HTML-Gen
Uploa

der

Compres
sion

Infer
ence

Page-
Rank

Graph
-BFS

Graph
-MST

0

2000

4000

6000

E
nd

-t
o-

en
d

La
te

nc
y

(m
s)

Single-agent RL (Single, baseline)

Single-agent RL (Multi)

ENSURE (Multi)

SIMPPO (Multi)

SIMPPO Online Performance

12

• SIMPPO provides online policy-serving performance comparable to single-agent RL in
isolation (the baseline), with the performance degradation <9.2%

• In multi-tenant/agent environments:
• SIMPPO achieves 2x-4.4x improvement compared to single-agent RL
• SIMPPO has 21.4x less performance degradation compared to a threshold-based

approach ENSURE (ACSOS 2020)

Benchmark Serverless Functions

3.0x
3.2x

4.2x
2.8x

4.1x 2.9x 2.0x
2.1x

3.5x 3.2x

4.3x
4.4x

Final Words
• SLO management in serverless platforms is critical but challenging!

• Serverless provides the unique opportunity of optimization of resources
• Incorporating performance-wise SLO/SLA in the pricing model?

• SIMPPO: Scalable and incremental multi-agent RL framework based on PPO
• Key idea: Virtual agent and auxiliary global system states
• Able to train to convergence and achieves performance isolation

• Limitations and Future Work
• Incorporating resilience management

• Fault tolerance (e.g., agent state transition loss, agent disconnection)
• Consideration of serverless function chains or function graphs (DAGs)
• Stay tuned: Multidimensional Pod Autoscaler in Kubernetes

• RL-based Autoscaler for general Kubernetes deployment

13

Thank you!

14

Haoran Qiu1, Weichao Mao1, Archit Patke1, Chen Wang2, Hubertus Franke2

Zbigniew T. Kalbarczyk1, Tamer Basar1, Ravishankar K. Iyer1

1 UIUC 2 IBM Research

• Check out the extended version of the paper for more details: https://haoran-qiu.com/pdf/simppo-extended.pdf

• Check out our paper published at NeurIPS 2022 for the theoretical results: https://haoran-qiu.com/pdf/nips22.pdf

https://haoran-qiu.com/pdf/simppo-extended.pdf
https://haoran-qiu.com/pdf/simppo-extended.pdf

Backup Slides

ML-managed SLO-driven Cloud Services
• Why ML?: Heuristics-based resource management are inefficient and not tenable

• Providers dynamically manage orchestration platforms to achieve efficiency as cloud evolves
• SIMPPO: Novel ML-driven solutions to automate the management of serverless platforms for diverse

customer workloads with reinforcement learning (RL)
• A system that orchestrates multiple learning-based agents to achieve optimality
• Provides a theoretical foundation for generalization and evolution of SIMPPO (NeurIPS 2022)

16

State 𝑆! , Rewards 𝑅!

Environment

Policy 𝜋" Action 𝐴!
Function

Controls

RL-based multidimensional container autoscaling
(Modeled as a Markov Decision Process)

Vertical
Scaling

Horizontal
Scaling

Central Idea: Minimize SLO violations by using the means of multi-dimensional workload distributions.
Each dimension represents a key system attribute (e.g., resource utilization, tail latency).

Motivating Examples

17

Environment

Agent-1
𝜋%!

𝜋%"
Agent-2𝐴!: cpu.shares += 256

𝑆!, 𝑅!, %cpu.shares = &'(
#)&*

𝑆!, 𝑅!, %cpu.shares = &'(
#)&*

Environment
Agent-1
𝜋%!

𝑆!"#, 𝑅!"#
%cpu.shares = '#&

#+,&

𝑆!"#, 𝑅!"#, %cpu.shares = +(-
#+,&

𝜋%"
Agent-2

Agent-1
𝜋%!

𝜋%"
Agent-2

𝑆!, 𝑅!, 𝐴!: Add a 256M-container

𝑆!, 𝑅!, 𝐴!: Remove a 128M-container

Environment
(128 MB left)

Agent-1
𝜋%!

𝑆!"#, 𝑅!"#, Added to another node

𝑆!"#, 𝑅!"#

𝜋%"
Agent-2

Environment
(256 MB left)

Example
#1

Example
#2

🤯

𝐴!: cpu.shares += 512

🤯

🤯
Denote that current
state is undesired

𝝅𝜽: RL Policy
𝑺𝒕: State at time t

: RL agent (per Function) : RL transitions : 𝑨𝒕: Action at time t
𝑹𝒕: Reward at time t

Deeper Dive into the Popular Single-agent RL Design

18

Client
FaaS

Controller

Invoker #2 …

Data Store

Activation Results

Function Code
or Images

Invoker #1

Container

Container

Container

API
Gateway

Horizontal &
Vertical Scaler

Docker & Cgroups

RL Agent

Action

States
Rewards

Requests

OpenWhisk Platform

App + Platform
Telemetry Data

R

RR

R

RRRR

I. Training

II. Serving

Policy Improvement

Policy Evaluation

Model

R: Denotes the requests to the function managed by the RL agent.

PolicyData
Collector

RL Pipeline

[FIRM, 2020 OSDI]

+/- Replicas
Resize containers

RL Proxy

Check out our paper for more Details!

Single-agent RL Design

19

𝑅, = 𝛼 & 𝑅𝑈, + 𝛽 & 𝑆𝑃, + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦

Resource Util
SLO Preservation

𝑆𝑃! = min(
𝑆𝐿𝑂 𝐿𝑎𝑡𝑒𝑛𝑐𝑦
𝐴𝑐𝑡𝑢𝑎𝑙 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 , 1)

Penalize illegal or undesired actions
• Frequent dangling decisions
• Scale in/up/down when 𝑁𝐶! = 0

• RL Algorithms: PPO (Proximal Policy Optimization)
• A policy gradient method and the default RL algorithm in OpenAI

• State Space: SLO Preservation Ratio (𝑆𝑃$), Resource Utilization (𝑅𝑈$(𝐶𝑃𝑈,𝑚𝑒𝑚)), Arrival Rate
Changes (𝐴𝐶$), Resource Limits (𝑅𝐿𝑇$(𝐶𝑃𝑈,𝑚𝑒𝑚)), Horizontal Concurrency (𝑁𝐶$)

• Action Space:
• Vertical scaling: +/- a STEP_SIZE of the resource limits

• 𝑎𝑣! = ∆𝑅𝐿𝑇! 𝐶𝑃𝑈,𝑚𝑒𝑚
• Horizontal scaling: +/- a STEP_SIZE of the number of function containers

• 𝑎ℎ! = ∆𝑁𝐶!
• Reward Function:

Single-agent RL Evaluation on 12 FaaS Benchmarks

20

No convergence with multiple agents
- agents not aware of each other

Single-agent RL trained in isolation
achieves convergence

Training in Isolation

Online Performance

Training with Multiple Agents

Benchmark Serverless Functions

3.1x
3.4x

4.6x

2.8x

4.2x

Independently trained
RL agents result in 2.1x
to 4.8x (up to 80%)
function execution
latency degradation

2.2x3.2x
2.1x

3.7x 3.3x

4.8x 4.6x

Moving to Multi-agent RL (MARL)

21

• Our approach: Providing system support that enables multiple RL-based controllers to
coexist
• Performance Isolation

• During training: Converges to a collectively optimal policy
• During execution: Achieves comparable performance to single-agent RL in isolation

• Scalability
• Challenge: In a multi-tenant serverless FaaS platform, new functions can be

increasingly registered
• Incremental training/retraining (adaptability)

• Challenge: Functions can be registered/removed/updated at any time, changing the
joint state space

SIMPPO Online Inference

22

Multi-tenant/agent Serverless Environment

𝜋!

Agent 1

𝐴! 𝑆!

𝑅, 𝑂!𝐴!

𝜋"

Agent 2

𝐴" 𝑆"

𝑅, 𝑂"𝐴"

𝜋#

Agent N

𝐴# 𝑆#

𝑅, 𝑂#𝐴#

• Each RL agent is plug-and-play onto different servers

• Scalable state & action space: agent trained w/ X agents applicable to scenarios w/ Y agents
• Zero values for empty RL agent slots
• Other RL agents treated as part of the environment → agent-order-agnostic

• Observations from all other agents (aggregated/averaged values)

𝐺) … …
𝐴$: Action
𝑂$: Observation
𝑅: Reward
𝐺$: Global states
𝜋$: Policy (actor)
𝑉$: Value function
(critic)

SIMPPO Neural Network Model architecture

23

Environment State (𝑠!)

Individual States (𝐼!) Mean-field States (𝐿!)

…

…

Action (𝑎!)

𝑉.(𝑠/)

…

…

Vertical Horizontal

Parameter
Update

Actor Network Critic Network

• Model architecture

Other Use Cases

24

States
Rewards

Resource Scaling

App #3
RL Agent #3

Resource Scaling
Executor

ActionsApp #2
RL Agent #2

Resource Scaling
Executor

ActionsApp #1

RL Agent #1

Resource Scaling
Executor

Actions

SIMPPO

Controller

Monitor
FaaS Platform

• SIMPPO as a general framework to support a variety of RL agents
that employ online learning algorithms

• Assumptions / Pre-conditions:
• Conflicts between agents in a shared environment
• Visibility of the states of the other agents
• Agent coming from the same distribution (same task + reward)

• Use cases:
• RL-based serverless resource management

• This work
• RL-based network flow congestion control (Aurora, ICML 2019)

• Shared network bandwidth
• RL-based video adaptation (streaming) (ABRL, ICML 2019)

• Shared network and video content server
• RL-based job scheduler (Decima, SIGCOMM 2019)

• Shared cluster resources and low-level task scheduler (queues)

0%
5%
10%
15%
20%
25%
30%
35%
40%
45%

0

100

200

300

400

500

5 20 35 50 65 80 95 110

SIMPPO Incremental and Scalable Training

25

Re
w

ar
d

Dr
op

 P
er

ce
nt

ag
e Retraining Episodes

Number of functions to start from

• As the # of functions increases from 5 to 110,
the reward drop % first increases and then
decreases after the # of functions is >20.

• The retraining time has similar trends, as
retraining is done until the per-episode reward
converges to a stable value.

• As the number of functions increases to 110,
the reward drop % and the retraining cost
decrease to 3.0% and 47.2 training episodes.

RQ: Is SIMPPO scalable with respect to converged rewards, online policy-serving
performance, and retraining time?

