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Background: Microservices AutoScaling

User-facing latency-sensitive web services:

In production, the use of microservices, the number of
microservices and the scale of their deployment have
Increased rapidly

Most of these microservice workloads have fluctuations
(diurnal pattern, variability based on a periodic
pattern) following the ‘work cycle’

Different workload scenarios require different
amount of service resources to be configured
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Background: Existing Works

Rule-based Autoscaling: e.g., Kubernetes

« Set static thresholds (CPU, memory, request rate)
*Require significant domain knowledge from experts to set thresholds
appropriately; Hard to scale.

L_earning-based Autoscaling: e.g., Autopilot?, FIRM?

 Rarely consider resource wastage and SLO assurances together
 Often result in considerable overprovisioning

./\.' Cloud service providers conservatively provision excess
: resources to ensure service level objectives (SLOs) are met.

[1] Haoran Qiu et al. 2020. FIRM: An Intelligent Fine-grained Resource Management Framework for SLO Oriented Microservices. In USENIX OSDI 3
[2] Krzysztof Rzadca et al. 2020. Autopilot: workload autoscaling at Google. In EuroSys.



Background: Microservices in Ant Group

Typical microservices Arch and their workloads System Characteristics in Ant Group:
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Results: Low CPU/Mem utilization
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6 Requirement: Improve resource utilization(CPU/Mem) while meeting SLOs,



DeepScaling: Maintain stable & high utilization

Can we keep a service at desired CPU utilization over time, while 1 : ‘

ensuring performance meets SLO through autoscaling? & ,Z

—

Step 1: Find the target CPU utilization to a level that can maintained at a stable
value while meeting SLOs
Step 2: Keep the service running at this target level consistently over time by
generating the recommended instances in advance for the near future
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System Architecture of DeepScaling

4 Three innovative core modules:
(5) Workload forecaster,
(® CPU utilization estimator,
(7) Scaling decision-maker
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How to Find the Target CPU Level?

Service state initialized S=1

v
@ Target level controller initialized X
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6 is a constant value and is set to 5 by default.

S1. The target level controller is initialized, (X is CPU utilization %
set to historical average CPU seen for the service)

S2. Three ML models generates # instances for next (T+1) epoch
S3. Instance Controller complete resource management

S4. SLO monitor determines SLO status

IF The SLO monitor does not detects an SLO exception,

Target level controller increase the target level value (CPU util.)
Else:
Target level is not changed
IF SLO monitor detects SLO anomaly
Target level controller lower the target level, and Set S=0
S5. T=T+1 and back to Step 2



Core Modules for Autoscaling Recommendation
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1) Workload Forecaster: Predicting future workloads
2) CPU Utilization Estimator: Estimate CPU utilization according to predicted workload
3) Scaling Decider: Generate autoscaling strategies based on target level and estimated CPU

Our experimental results: 30 minute epochs (variable, they have experimented with different epoch values)



Module-1: Workload Forecaster

The workload forecaster characterizes the relationship among the seven workload metrics and interactions with
a service call graph by using a spatial-temporal graph neural network (STGNN).

e Graph Convolution Kernel:

® multiple workload metrics as a graph structure

® node represents different workload metrics

® edge indicates the relationship between them
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S Comolton et Corvtion GNNs are able to model the interactions and relationships
within the multi-dimensional workload
Accurately predict well in advance for proactive scaling.




Module-1: Effectiveness in Workload Prediction

Performance comparison with state of the art methods: N-beats; Transformer
Compared Baselines:

« N-beats (ICLR 2020) — Deep NN w/backward and Result “\ Metric | |
forward residual links - MAE | Gain | RMSE | Gain
« Transformer (NIPS 2017) — based on the attention mech. Metho
N-beats 1.61 | 35.66% | 188.89 | 36.80%
Mean absolute error and RMSE for DeepScaling are better Transformer 1.39 | 25.26% | 166.95 | 28.51%
Importantly, STGNN in DeepScaling helps capture DeepScaling 1.04 - 119.37 -
(RPC-in) bursts -- Better Predictive Capability
Test case:
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Module-2: CPU Utilization Estimator

CPU utilization estimator characterizes microservices with 7 workload metrics along with 3 specific auxiliary
features with a probabilistic regression network for accurate CPU level estimation

) CPU Utilization Estimator Needed to handle high variability of instantaneous CPU utilization
= _ 3 specific auxiliary features:
.'. :M mean__(1) Instance-count: the number of instances for each microservice
RPC —ingsa 8 ___’.
m[e) 1) Service-1D: the unique identifier of each microservice
I\EltivariateNonna]Diag . . . . .
- @ Time-stamp: the time-stamp during the day, in minutes, when the
Msg - subi.s workload metrics are collected/forecast
D ID
= & 8 @ Benefits
File 1/0 Time Count
e s I e i Specific auxiliary features can comprehensively characterize the
|| Instance Time Service  service’s workload (e.g., load from timed tasks or system ovhd.)
I count stamp ID

! for accurate estimation of the CPU utilization
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Module-2: CPU Estimation Performance

Performance comparison with SOTA method:
Compared baselines:

* Reg _ (FGCS 2011) — linear regression Method | MAE | Gain | RMSE | Gain | Max, o,
* Analytical -(JCC 2019) - SVM R 144 | 548% | 2.26 | 64.15% 21.06
 BAPA (TSC 2020) — decision tree regressor Eg_ ' B N e '
Analytical | 1.99 | 67.3% | 297 | 72.72% 20.96

DeepScaling: MAE is at least 2x better than others BAPA 1.25 | 48.0% | 2.11 |[61.61% | 21.97
Max Error much lower. DeepScaling | 0.65 - 0.81 - 2.69
Test case:
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Module-3: Autoscaling Decision Making

DeepScaling uses a DON-based Reinforcement Learning network along with the CPU
utilization estimator to generate an autoscaling strategy.
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MainNet )
Action ;4

TargetNet

Experience Replay

Action-space: F(Count),Fe{Increased, Decreased, Unchanged}
State-space: (Service-ID, cpu-util), where O<cpu-util< 100

Reward function:
Target Level

/
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Evaluation Dataset(1)

For the evaluation of Workload Predictor and CPU Utilization Evaluator:
58 different kinds of real microservices from Ant Group

€ The main task is to provide a high availability online payment platform
€ the services are usually accessed more than 500 million times everyday
€ We collected their workload data and CPU utilization data for one month
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Evaluation Dataset(2)

Overall DeepScaling system performance evaluation:

5 microservices from 58 which forms a minimal, full-functional service chain
Debug and evaluate in an internal simulation environment

Table 4: Workload metrics of the Sample Service (Times/minute)

NO. | RPC-in | RPC-out | Msg-pub | Msg-sub | DB-Access | File I/O PV
Al | 6.7x10° | 3.4x 107 | 2.7x10° | 3.5%x10° | 7.7x10% | 3.7x10° | 1.9 x 10°
A2 | 2.5%10° 0 1.3x107 | 3.4x107 | 2.0x10® | 7.1 x10° 0

A3 | 48x10% | 6.4%x10° | 1.4x10* | 1.9%x10* | 6.8x10° | 2.1x10° | 2.9 % 10’
A4 | 1.4x10° 0 0 1.0x 10> | 8.0x10° | 3.2x10° 0

A5 | 4.1x10° | 9.3 % 10’ 0 28x10° | 1.1x10° | 1.2 x 10° 0

* Al is a database dominated microservice.

« A2 is a messaging middleware microservice.

« A3 is a web page microservice with an average of 290,000 visits per minute.
* A4 is a RPC-in dominated microservice.
« A5 is a core file microservice with significant File I/O and msg-sub.

Each microservice
has diff. workload
characteristic
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Administrator typically set # instances for each microservice to be 1800, when no autoscaling was used



Overall Performance of AutoScaling

Compared Baselines:

* Rule-based

* FIRM (OSDI-2020@UIUC)
 Autopilot (Eurosys-2020@Google)

Different approaches w.r.t. CPU utilization
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(a) Relative CPU stability rate

DeepScaling improves RCS by 61.1%,
40.8%, 24.6% over compared methods.

RCS = y,/1440

y, . #minutes when the CPU utilization
fluctuates around the target level.
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(b) Relative resource utilization

DeepScaling improves RRU by 49.4%,

20.2%, 14.0% over compared methods.
RRU =C/C,

C: #instance for the particular method

C,: #instance by the rule-based method
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Adoption of DeepScaling in Ant Group

* Deployed in production environment 35 s
of Ant Group for 135 microservices. 70 30 397 . .
1 H 80.6 354 35.235.2
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Conclusions

4+ \We proposed DeepScaling to achieve maximum resource savings by maintaining the
CPU utilization at a stable target level without loss in the quality of service

1. Spatio-temporal Graph Neural Network forecasts workload for each service accurately:
Learns relationship between different workload metrics and among services; uses service
call-graphs

2. Deep Neural Network: Estimates CPU utilization for different services

3. Model-based reinforcement learning model: generates the autoscaling policy.

4 DeepScaling: Adopted in Ant Group for 130+ microservices related to payment systems
for daily automatic resource provisioning management.

4+ Saves 30K+ CPU cores/day on average, compared to previous rule-based solutions.
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