

DeepScaling: Microservices AutoScaling for Stable CPU Utilization in Large Scale Cloud Systems

Ziliang Wang^{1,2}, Shiyi Zhu², Jianguo Li², Wei Jiang², K. K. Ramakrishnan³, Yangfei Zheng², Meng Yan, Xiaohong Zhang¹, Alex X. Liu²

Background: Microservices AutoScaling

User-facing latency-sensitive web services: In production, the use of microservices, the number of **microservices** and the scale of their deployment have increased rapidly

Most of these microservice **workloads have fluctuations** (diurnal pattern, variability based on a periodic pattern) following the 'work cycle'

Different workload scenarios require different amount of service resources to be configured

Background: Existing Works

Rule-based Autoscaling: e.g., Kubernetes

Set static thresholds (CPU, memory, request rate)
Require significant domain knowledge from experts to set thresholds appropriately; Hard to scale.

Learning-based Autoscaling: e.g., Autopilot¹, FIRM²

- Rarely consider resource wastage and SLO assurances together
- Often result in considerable overprovisioning

Cloud service providers conservatively provision excess resources to ensure service level objectives (SLOs) are met.

[1] Haoran Qiu et al. 2020. FIRM: An Intelligent Fine-grained Resource Management Framework for SLO Oriented Microservices. In USENIX OSDI[2] Krzysztof Rzadca et al. 2020. Autopilot: workload autoscaling at Google. In EuroSys.

Background: Microservices in Ant Group

System Characteristics in Ant Group:

- \bigstar 3000+ microservices with diverse dominant workloads
- \Rightarrow > 1 million pods/VMs
- ✦ Avg 1 million accesses/min
- \bullet SLO >= 99.9995% in terms success

rate in minutes.

Dramatic changes in workload over time:

Results: Low CPU/Mem utilization

DeepScaling: Maintain stable & high utilization

Can we keep a service at desired CPU utilization over time, while

ensuring performance meets SLO through autoscaling?

Step 1: Find the target CPU utilization to a level that can maintained at a stable value while meeting SLOs
Step 2: Keep the service running at this target level consistently over time by generating the recommended instances in advance for the near future

System Architecture of DeepScaling

- ♦ Three innovative core modules:
 - 5 Workload forecaster,
 - 6 CPU utilization estimator,
 - 7 Scaling decision-maker
 - Auxiliary modules:
 - \diamond Service monitor;
 - ♦ SLO monitor;
 - ♦ Target level controller;
 - ♦ Instance (HPA) Controller;
 - ♦ VPA Controller
 - ♦ Load Balancer

How to Find the Target CPU Level?

S1. The target level controller is **initialized**, (X is CPU utilization %

set to historical average CPU seen for the service)

S2. Three ML models generates # instances for next (T+1) epoch

S3. Instance Controller **complete resource management**

S4. SLO monitor determines SLO status

IF The SLO monitor does not detects an SLO exception,

IF S==1:

Target level controller increase the target level value (CPU util.) Else:

Target level is not changed

IF SLO monitor detects SLO anomaly

Target level controller lower the target level, and Set S=0

S5. T=T+1 and back to Step 2

 δ is a constant value and is set to 5 by default.

Core Modules for Autoscaling Recommendation

1) Workload Forecaster: Predicting future workloads

2) CPU Utilization Estimator: Estimate CPU utilization according to predicted workload

3) Scaling Decider: Generate autoscaling strategies based on target level and estimated CPU

Our experimental results: 30 minute epochs (variable, they have experimented with different epoch values)

Module-1: Workload Forecaster

The workload forecaster characterizes the relationship among the seven workload metrics and interactions with a service call graph by using **a spatial-temporal graph** neural network (STGNN).

Graph Convolution Kernel:

• multiple workload metrics as a graph structure

- node represents different workload metrics
- edge indicates the relationship between them

Benefits:

GNNs are able to model **the interactions and relationships** within the multi-dimensional workload Accurately predict well in advance for proactive scaling.

Module-1: Effectiveness in Workload Prediction

Performance comparison with state of the art methods: N-beats; Transformer

Compared Baselines:

- N-beats (ICLR 2020) Deep NN w/backward and forward residual links
- Transformer (NIPS 2017) based on the attention mech.

Mean absolute error and RMSE for DeepScaling are better Importantly, STGNN in DeepScaling helps capture (RPC-in) bursts -- Better Predictive Capability Test case:

Result Metric Method	MAE	Gain	RMSE	Gain
N-beats	1.61	35.66%	188.89	36.80%
Transformer	1.39	25.26%	166.95	28.51%
DeepScaling	1.04	-	119.37	-

Module-2: CPU Utilization Estimator

CPU utilization estimator characterizes microservices with 7 workload metrics along with 3 specific auxiliary features with a probabilistic regression network for accurate CPU level estimation

Needed to handle high variability of instantaneous CPU utilization 3 specific auxiliary features:

(1) Instance-count: the number of instances for each microservice

^{S_{t+1}} Service-ID: the unique identifier of each microservice

3) **Time-stamp:** the time-stamp during the day, in minutes, when the workload metrics are collected/forecast

Benefits:

Specific auxiliary features can comprehensively characterize the service's workload (e.g., load from timed tasks or system ovhd.) for accurate estimation of the CPU utilization

Module-2: CPU Estimation Performance

Performance comparison with SOTA method:

Compared baselines:

- Reg (FGCS 2011) linear regression
- Analytical (JCC 2019) SVM
- BAPA (TSC 2020) decision tree regressor

DeepScaling: MAE is at least 2x better than others Max Error much lower.

Method	MAE	Gain	RMSE	Gain	Max _{error}
Reg	1.44	54.8%	2.26	64.15%	21.06
Analytical	1.99	67.3%	2.97	72.72%	20.96
BAPA	1.25	48.0%	2.11	61.61%	21.97
DeepScaling	0.65	-	0.81	-	2.69

Test case:

Module-3: Autoscaling Decision Making

DeepScaling uses a **DQN-based Reinforcement Learning** network along with the **CPU utilization estimator** to generate an autoscaling strategy.

Action-space: $F(Count), F \in \{Increased, Decreased, Unchanged\}$

State-space: (*Service-ID*, *cpu-util*), *where* $0 < cpu-util \leq 100$

$$L(\Phi) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a'; \Phi_{i-1}) - Q(s, a; \Phi_i)\right)^2\right]$$

TargeNet output MainNet output

Evaluation Dataset(1)

For the evaluation of Workload Predictor and CPU Utilization Evaluator: 58 different kinds of real microservices from Ant Group

- The main task is to provide a high availability **online payment platform**
- the services are usually accessed more than **500 million** times everyday
- We collected their workload data and CPU utilization data for one month

Evaluation Dataset(2)

Overall DeepScaling system performance evaluation:

5 microservices from 58 which forms a minimal, full-functional service chain Debug and evaluate in an internal simulation environment

Table 4: Workload metrics of the Sample Service (Times/minute)

NO.	RPC-in	RPC-out	Msg-pub	Msg-sub	DB-Access	File I/O	PV
A1	6.7×10^{5}	3.4×10^{7}	2.7×10^{5}	3.5×10^{5}	7.7×10^{8}	3.7×10^{6}	1.9×10^{3}
A2	2.5×10^{5}	0	1.3×10^{7}	3.4×10^{7}	2.0×10^{8}	7.1×10^{5}	0
A3	4.8×10^{4}	6.4×10^{6}	1.4×10^{4}	1.9×10^{4}	6.8×10^{5}	2.1×10^{5}	2.9×10^{5}
A4	1.4×10^{6}	0	0	1.0×10^{5}	$8.0 imes 10^{6}$	3.2×10^{5}	0
A5	4.1×10^{5}	9.3×10^{5}	0	2.8×10^{6}	1.1×10^{6}	1.2×10^{6}	0

Each microservice has diff. workload characteristic

- A1 is a **database dominated** microservice.
- A2 is a **messaging middleware** microservice.
- A3 is a **web page microservice** with an average of 290,000 visits per minute.
- A4 is a **RPC-in dominated** microservice.
- A5 is a **core file microservice** with significant File I/O and msg-sub.

Administrator typically set # instances for each microservice to be 1800, when no autoscaling was used

Overall Performance of AutoScaling

Compared Baselines:

• Rule-based

- FIRM (OSDI-2020@UIUC)
- Autopilot (Eurosys-2020@Google)

Different approaches w.r.t. CPU utilization

Different approaches w.r.t. #Instances

Performance comparison with SOTA method

(a) Relative CPU stability rate

DeepScaling improves RCS by 61.1%, 40.8%, 24.6% over compared methods.

 $RCS = y_t / 1440$

 y_t : #minutes when the CPU utilization fluctuates around the target level.

(b) Relative resource utilization

DeepScaling improves RRU by 49.4%, 20.2%, 14.0% over compared methods.

 $RRU = C/C_r$

C: #instance for the particular method C_r : #instance by the rule-based method 16

Adoption of DeepScaling in Ant Group

- Deployed in production environment of Ant Group for 135 microservices.
- Running 10months w/o SLO issues.
- Resource saving in Oct, 2022: Max: 44K core/day and 90 PB/day Min: 19K core/day and 39 PB/day Avg: 32K core/day and 66 PB/day

Online Showcase:

Service w/o DeepScaling:Daily CPU util.(every 1 min)

Service with DeepScaling: Daily CPU util.(every 1 min)

Conclusions

- ♦ We proposed DeepScaling to achieve maximum resource savings by maintaining the CPU utilization at a stable target level without loss in the quality of service
- 1. Spatio-temporal Graph Neural Network **forecasts workload for each service accurately:** Learns relationship between different workload metrics and among services; uses service call-graphs
- 2. Deep Neural Network: Estimates CPU utilization for different services
- 3. Model-based reinforcement learning model: generates the autoscaling policy.
- DeepScaling: Adopted in Ant Group for 130+ microservices related to payment systems for daily automatic resource provisioning management.
- ◆ Saves 30K+ CPU cores/day on average, compared to previous rule-based solutions.