
Ziliang Wang1,2, Shiyi Zhu2, Jianguo Li2, Wei Jiang2,

K. K. Ramakrishnan3, Yangfei Zheng2, Meng Yan,

Xiaohong Zhang1, Alex X. Liu2

DeepScaling: Microservices AutoScaling for Stable

CPU Utilization in Large Scale Cloud Systems

1

Background: Microservices AutoScaling

User-facing latency-sensitive web services:

In production, the use of microservices, the number of

microservices and the scale of their deployment have

increased rapidly

Most of these microservice workloads have fluctuations

(diurnal pattern, variability based on a periodic

pattern) following the ‘work cycle’

OrDifferent workload scenarios require different

amount of service resources to be configured

2

Background: Existing Works

Cloud service providers conservatively provision excess

resources to ensure service level objectives (SLOs) are met.

Rule-based Autoscaling: e.g., Kubernetes

• Set static thresholds (CPU, memory, request rate)

•Require significant domain knowledge from experts to set thresholds

appropriately; Hard to scale.

Learning-based Autoscaling: e.g., Autopilot1, FIRM2

• Rarely consider resource wastage and SLO assurances together

• Often result in considerable overprovisioning

[1] Haoran Qiu et al. 2020. FIRM: An Intelligent Fine-grained Resource Management Framework for SLO Oriented Microservices. In USENIX OSDI

[2] Krzysztof Rzadca et al. 2020. Autopilot: workload autoscaling at Google. In EuroSys.

3

Background: Microservices in Ant Group

System Characteristics in Ant Group:

Dramatic changes in workload over time:

Results: Low CPU/Mem utilization

Requirement: Improve resource utilization(CPU/Mem) while meeting SLOs

✦ 3000+ microservices with diverse

dominant workloads

✦ > 1 million pods/VMs

✦ Avg 1 million accesses/min

✦ SLO >= 99.9995% in terms success

rate in minutes.

Typical microservices Arch and their workloads

4

DeepScaling: Maintain stable & high utilization

Step 1: Find the target CPU utilization to a level that can maintained at a stable

value while meeting SLOs

Step 2: Keep the service running at this target level consistently over time by

generating the recommended instances in advance for the near future

Can we keep a service at desired CPU utilization over time, while

ensuring performance meets SLO through autoscaling?

5

System Architecture of DeepScaling

Workload

Forecaster

CPU

Utilization Estimator

Scaling

Decider

update

CPU Utilization

Service

Monitor

Login Service

SLO

Monitor

Target level setting

#CPU Utilization

#Instance

#Instance

L
o

ad

B
al

an
ce

r

Target level

Controller

No

Yes

#Instance

userInfo Service userStorage Service

Ads Service Message Service postStorage Service

…… …… ……

…… …………

L
o

ad

B
al

an
ce

r

L
o

ad

B
al

an
ce

r
L

o
ad

B
al

an
ce

r

L
o

ad

B
al

an
ce

r
L

o
ad

B

al
an

ce
r

Instance

Controller

VPA

Controller

✦ Three innovative core modules:

⑤ Workload forecaster,

⑥ CPU utilization estimator,

⑦ Scaling decision-maker

✦ Auxiliary modules:

✧ Service monitor;

✧ SLO monitor;

✧ Target level controller;

✧ Instance (HPA) Controller;

✧ VPA Controller

✧ Load Balancer

1 2
3

4

5 6 7

8

6

Target level controller initialized X

Generate N instances

Target level

X = X +𝞭

Target level

X = X-𝞭,

Service state

S=0
Target level

X = X

SLO

monitor

Abnormal

Normal

YesNo

Final State

How to Find the Target CPU Level?

S1. The target level controller is initialized, (X is CPU utilization %

set to historical average CPU seen for the service)

S2. Three ML models generates # instances for next (T+1) epoch

S3. Instance Controller complete resource management

S4. SLO monitor determines SLO status

IF The SLO monitor does not detects an SLO exception,

IF S==1:

Target level controller increase the target level value (CPU util.)

Else:

Target level is not changed

IF SLO monitor detects SLO anomaly

Target level controller lower the target level，and Set S=0

S5. T=T+1 and back to Step 2

S==0

Service state initialized S=1

5 6 7

3

3

33

2

𝛿 is a constant value and is set to 5 by default.
7

Core Modules for Autoscaling Recommendation

1) Workload Forecaster: Predicting future workloads

2) CPU Utilization Estimator: Estimate CPU utilization according to predicted workload

3) Scaling Decider: Generate autoscaling strategies based on target level and estimated CPU

Our experimental results: 30 minute epochs (variable, they have experimented with different epoch values)
8

…
…

𝑅𝑃𝐶 − 𝑖𝑛𝑡+1

𝐹ile 𝐼/𝑂𝑡+1

The workload forecaster characterizes the relationship among the seven workload metrics and interactions with

a service call graph by using a spatial-temporal graph neural network (STGNN).

Module-1: Workload Forecaster

Graph Convolution Kernel:

A1_RPC-in

A1_RPC-out

A2_RPC-in

A3_RPC-in

A4_PRC_inA4_PV

A2_RPC-out
A4_PRC_out

A3_PRC_inA5_PRC_in

𝑉t

A1_RPC-in

A1_RPC-out

A2_RPC-in

A3_RPC-in

A4_PRC_inA4_PV

A2_RPC-out
A4_PRC_out

A3_PRC_inA5_PRC_in

𝑉t−𝑚

A1_RPC-in

A1_RPC-out

A3_RPC-in

A4_PV

A3_PRC_inA5_PRC_in

𝑉t−𝑀+1

 multiple workload metrics as a graph structure

 node represents different workload metrics

 edge indicates the relationship between them

GNNs are able to model the interactions and relationships

within the multi-dimensional workload

Accurately predict well in advance for proactive scaling.

Benefits:

9

Performance comparison with state of the art methods: N-beats; Transformer

Module-1: Effectiveness in Workload Prediction

Compared Baselines:

• N-beats (ICLR 2020) – Deep NN w/backward and

forward residual links

• Transformer (NIPS 2017) – based on the attention mech.

Test case:

Mean absolute error and RMSE for DeepScaling are better
Importantly, STGNN in DeepScaling helps capture
(RPC-in) bursts -- Better Predictive Capability

10

CPU utilization estimator characterizes microservices with 7 workload metrics along with 3 specific auxiliary

features with a probabilistic regression network for accurate CPU level estimation

Module-2: CPU Utilization Estimator

Needed to handle high variability of instantaneous CPU utilization

3 specific auxiliary features:

① Instance-count: the number of instances for each microservice

② Service-ID: the unique identifier of each microservice

③ Time-stamp: the time-stamp during the day, in minutes, when the

workload metrics are collected/forecast

Specific auxiliary features can comprehensively characterize the

service’s workload (e.g., load from timed tasks or system ovhd.)

for accurate estimation of the CPU utilization

Benefits:

11

Module-2: CPU Estimation Performance

Performance comparison with SOTA method:

Compared baselines:

• Reg (FGCS 2011) – linear regression

• Analytical (JCC 2019) - SVM

• BAPA (TSC 2020) – decision tree regressor

Test case:

DeepScaling: MAE is at least 2x better than others
Max Error much lower.

12

DeepScaling uses a DQN-based Reinforcement Learning network along with the CPU

utilization estimator to generate an autoscaling strategy.

Target Level

CPU utilization

Module-3: Autoscaling Decision Making

Action-space: F(Count),F∈{Increased, Decreased, Unchanged}

State-space: (𝑆𝑒𝑟𝑣𝑖𝑐𝑒-ID, cpu-util), where 0<cpu-util≤ 100

Reward function:

Learning policy：

MainNet outputTargeNet output

13

S S'

Evaluation Dataset(1)

For the evaluation of Workload Predictor and CPU Utilization Evaluator:

58 different kinds of real microservices from Ant Group

 The main task is to provide a high availability online payment platform

 the services are usually accessed more than 500 million times everyday

 We collected their workload data and CPU utilization data for one month

14

Evaluation Dataset(2)

• A1 is a database dominated microservice.

• A2 is a messaging middleware microservice.

• A3 is a web page microservice with an average of 290,000 visits per minute.

• A4 is a RPC-in dominated microservice.

• A5 is a core file microservice with significant File I/O and msg-sub.

Overall DeepScaling system performance evaluation:

5 microservices from 58 which forms a minimal, full-functional service chain

Debug and evaluate in an internal simulation environment

15

Each microservice
has diff. workload
characteristic

Administrator typically set # instances for each microservice to be 1800, when no autoscaling was used

Performance comparison with SOTA method

Overall Performance of AutoScaling

Compared Baselines:

• Rule-based

• FIRM (OSDI-2020@UIUC)

• Autopilot (Eurosys-2020@Google)

Different approaches w.r.t. CPU utilization

Different approaches w.r.t. #Instances
DeepScaling improves RCS by 61.1%,

40.8%, 24.6% over compared methods.

𝑹𝑪𝑺 = 𝒚𝒕/𝟏𝟒𝟒𝟎

𝒚𝒕 : #minutes when the CPU utilization

fluctuates around the target level.

DeepScaling improves RRU by 49.4%,

20.2%, 14.0% over compared methods.

𝑹𝑹𝑼 = 𝑪/𝑪𝒓

𝑪: #instance for the particular method

𝐶𝑟: #instance by the rule-based method
16

47.2

80.6

66.7
61.0

38.0

75.6
70.070.1

63.3
58.7

74.9

90.7

39.2

73.5
69.2

73.173.3

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time

M
e
m

o
r
y 23.22

39.7

32.9
30.1

18.9

37.1
34.434.4

31.2
28.7

37.0

44.5

18.9

35.4
33.21

35.235.2

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
o

r
e

Adoption of DeepScaling in Ant Group

Service with DeepScaling: Daily CPU util.(every 1 min)

• Deployed in production environment

of Ant Group for 135 microservices.

• Running 10months w/o SLO issues.

• Resource saving in Oct, 2022:

Max: 44K core/day and 90 PB/day

Min: 19K core/day and 39 PB/day

Avg: 32K core/day and 66 PB/day

Service w/o DeepScaling:Daily CPU util.(every 1 min)

Online Showcase:

17

✦We proposed DeepScaling to achieve maximum resource savings by maintaining the

CPU utilization at a stable target level without loss in the quality of service

1. Spatio-temporal Graph Neural Network forecasts workload for each service accurately:

Learns relationship between different workload metrics and among services; uses service

call-graphs

2. Deep Neural Network: Estimates CPU utilization for different services

3. Model-based reinforcement learning model: generates the autoscaling policy.

✦ DeepScaling: Adopted in Ant Group for 130+ microservices related to payment systems

for daily automatic resource provisioning management.

✦ Saves 30K+ CPU cores/day on average, compared to previous rule-based solutions.

Conclusions

18

