
Ziliang Wang1,2, Shiyi Zhu2, Jianguo Li2, Wei Jiang2,

K. K. Ramakrishnan3, Yangfei Zheng2, Meng Yan,

Xiaohong Zhang1, Alex X. Liu2

DeepScaling: Microservices AutoScaling for Stable 

CPU Utilization in Large Scale Cloud Systems

1



Background: Microservices AutoScaling 

User-facing latency-sensitive web services:

In production, the use of microservices, the number of 

microservices and the scale of their deployment have 

increased rapidly

Most of these microservice workloads have fluctuations

(diurnal pattern, variability based on a periodic 

pattern) following the ‘work cycle’

OrDifferent workload scenarios require different 

amount of service resources to be configured

2



Background: Existing  Works

Cloud service providers conservatively provision excess 

resources to ensure service level objectives (SLOs) are met. 

Rule-based Autoscaling: e.g., Kubernetes

• Set static thresholds (CPU, memory, request rate) 

•Require significant domain knowledge from experts to set thresholds 

appropriately; Hard to scale.

Learning-based Autoscaling: e.g., Autopilot1, FIRM2

• Rarely consider resource wastage and SLO assurances together

• Often result in considerable overprovisioning

[1] Haoran Qiu et al. 2020. FIRM: An Intelligent Fine-grained Resource Management Framework for SLO Oriented Microservices. In USENIX OSDI

[2] Krzysztof Rzadca et al. 2020. Autopilot: workload autoscaling at Google. In EuroSys. 

3



Background: Microservices in Ant Group

System Characteristics in Ant Group:

Dramatic changes in workload over time:

Results: Low CPU/Mem utilization

Requirement: Improve resource utilization(CPU/Mem) while meeting SLOs

✦ 3000+ microservices with diverse

dominant workloads

✦ > 1 million pods/VMs

✦ Avg 1 million accesses/min

✦ SLO >= 99.9995% in terms success

rate in minutes.

Typical microservices Arch and their workloads

4



DeepScaling: Maintain stable & high utilization

Step 1: Find the target CPU utilization to a level that can maintained at a stable 

value while meeting SLOs

Step 2: Keep the service running at this target level consistently over time by 

generating the recommended instances in advance for the near future

Can we keep a service at desired CPU utilization over time, while 

ensuring performance meets SLO through autoscaling?

5



System Architecture of DeepScaling

Workload 

Forecaster

CPU

Utilization Estimator

Scaling

Decider

update

# CPU Utilization

Service

Monitor

Login Service

SLO

Monitor

Target level setting

#CPU Utilization

#Instance

#Instance

L
o

ad
 

B
al

an
ce

r

Target level

Controller

No

Yes

#Instance

userInfo Service userStorage Service 

Ads Service Message Service postStorage Service 

…… …… ……

…… …………

L
o

ad
 

B
al

an
ce

r

L
o

ad
 

B
al

an
ce

r
L

o
ad

 

B
al

an
ce

r

L
o

ad
 

B
al

an
ce

r
L

o
ad

 
B

al
an

ce
r

Instance

Controller

VPA   

Controller

✦ Three innovative core modules:

⑤ Workload forecaster,

⑥ CPU utilization estimator,

⑦ Scaling decision-maker

✦ Auxiliary modules:

✧ Service monitor;

✧ SLO monitor;

✧ Target level controller;

✧ Instance (HPA) Controller;

✧ VPA Controller

✧ Load Balancer

1 2
3

4

5 6 7

8

6



Target level controller initialized X

Generate N instances

Target level 

X = X +𝞭

Target level 

X = X-𝞭,

Service state 

S=0
Target level 

X = X 

SLO

monitor

Abnormal

Normal

YesNo

Final State

How to Find the Target CPU Level?

S1. The target level controller is initialized, (X is CPU utilization %

set to historical average CPU seen for the service)

S2. Three ML models  generates # instances for next (T+1) epoch

S3. Instance Controller complete resource management

S4. SLO monitor determines SLO status

IF The SLO monitor does not detects an SLO exception,

IF S==1: 

Target level controller increase the target level value (CPU util.)

Else:

Target level is not changed

IF SLO monitor detects SLO anomaly

Target level controller lower the target level，and Set S=0

S5.  T=T+1 and back to Step 2

S==0

Service state initialized S=1

5 6 7

3

3

33

2

𝛿 is a constant value and is set to 5 by default.
7



Core Modules for Autoscaling Recommendation 

1) Workload Forecaster: Predicting future workloads

2) CPU Utilization Estimator: Estimate CPU utilization according to predicted workload

3) Scaling Decider: Generate autoscaling strategies based on target level and estimated CPU

Our experimental results: 30 minute epochs (variable, they have experimented with different epoch values)
8



…
…

𝑅𝑃𝐶 − 𝑖𝑛𝑡+1

𝐹ile 𝐼/𝑂𝑡+1

The workload forecaster characterizes the relationship among the seven workload metrics and interactions with

a service call graph by using a spatial-temporal graph neural network (STGNN).

Module-1: Workload Forecaster

Graph Convolution Kernel:

A1_RPC-in

A1_RPC-out

A2_RPC-in

A3_RPC-in

A4_PRC_inA4_PV

A2_RPC-out
A4_PRC_out

A3_PRC_inA5_PRC_in

𝑉t

A1_RPC-in

A1_RPC-out

A2_RPC-in

A3_RPC-in

A4_PRC_inA4_PV

A2_RPC-out
A4_PRC_out

A3_PRC_inA5_PRC_in

𝑉t−𝑚

A1_RPC-in

A1_RPC-out

A3_RPC-in

A4_PV

A3_PRC_inA5_PRC_in

𝑉t−𝑀+1

 multiple workload metrics as a graph structure

 node represents different workload metrics

 edge indicates the relationship between them

GNNs are able to model the interactions and relationships  

within the multi-dimensional workload 

Accurately predict well in advance for proactive scaling.

Benefits:

9



Performance comparison with state of the art methods: N-beats; Transformer 

Module-1: Effectiveness in Workload Prediction

Compared Baselines: 

• N-beats (ICLR 2020) – Deep NN w/backward and 

forward  residual links

• Transformer (NIPS 2017) – based on the attention mech.

Test case:

Mean absolute error and RMSE for DeepScaling are better
Importantly, STGNN in DeepScaling helps capture 
(RPC-in) bursts  -- Better Predictive Capability 

10



CPU utilization estimator characterizes microservices with 7 workload metrics along with 3 specific auxiliary

features with a probabilistic regression network for accurate CPU level estimation

Module-2: CPU Utilization Estimator

Needed to handle high variability of instantaneous CPU utilization

3 specific auxiliary features:

① Instance-count: the number of instances for each microservice

② Service-ID: the unique identifier of each microservice

③ Time-stamp: the time-stamp during the day, in minutes, when the

workload metrics are collected/forecast

Specific auxiliary features can comprehensively characterize the 

service’s workload (e.g., load from timed tasks or system ovhd.)

for accurate estimation of the CPU utilization

Benefits:

11



Module-2: CPU Estimation Performance

Performance comparison with SOTA method:

Compared baselines:

• Reg (FGCS 2011) – linear regression

• Analytical (JCC 2019) - SVM

• BAPA (TSC 2020) – decision tree regressor

Test case:

DeepScaling: MAE is at least 2x better than others
Max Error much lower.

12



DeepScaling uses a DQN-based Reinforcement Learning network along with the CPU

utilization estimator to generate an autoscaling strategy.

Target Level

CPU utilization

Module-3: Autoscaling Decision Making

Action-space: F(Count),F∈{Increased, Decreased, Unchanged}

State-space: (𝑆𝑒𝑟𝑣𝑖𝑐𝑒-ID, cpu-util), where 0<cpu-util≤ 100

Reward function:

Learning policy：

MainNet outputTargeNet output

13

S S'



Evaluation Dataset(1)

For the evaluation of Workload Predictor and CPU Utilization Evaluator:

58 different kinds of real microservices from Ant Group

 The main task is to provide a high availability online payment platform 

 the services are usually accessed more than 500 million times everyday

 We collected their workload data and CPU utilization data for one month

14



Evaluation Dataset(2)

• A1 is a database dominated microservice.

• A2 is a messaging middleware microservice.

• A3 is a web page microservice with an average of 290,000 visits per minute.

• A4 is a RPC-in dominated microservice.

• A5 is a core file microservice with significant File I/O and msg-sub.

Overall DeepScaling system performance evaluation:

5 microservices from 58 which forms a minimal, full-functional service chain

Debug and evaluate in an internal simulation environment

15

Each microservice
has diff. workload
characteristic

Administrator typically set # instances for each microservice to be 1800, when no autoscaling was used



Performance comparison with SOTA method

Overall Performance of AutoScaling 

Compared Baselines: 

• Rule-based

• FIRM (OSDI-2020@UIUC)

• Autopilot (Eurosys-2020@Google)

Different approaches w.r.t. CPU utilization 

Different approaches w.r.t. #Instances 
DeepScaling improves RCS by 61.1%,

40.8%, 24.6% over compared methods.

𝑹𝑪𝑺 = 𝒚𝒕/𝟏𝟒𝟒𝟎

𝒚𝒕 : #minutes when the CPU utilization

fluctuates around the target level.

DeepScaling improves RRU by 49.4%,

20.2%, 14.0% over compared methods.

𝑹𝑹𝑼 = 𝑪/𝑪𝒓

𝑪: #instance for the particular method

𝐶𝑟: #instance by the rule-based method
16



47.2

80.6

66.7
61.0

38.0

75.6
70.070.1

63.3
58.7

74.9

90.7

39.2

73.5
69.2

73.173.3

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Time

M
e
m

o
r
y 23.22

39.7

32.9
30.1

18.9

37.1
34.434.4

31.2
28.7

37.0

44.5

18.9

35.4
33.21

35.235.2

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
o

r
e

Adoption of DeepScaling in Ant Group

Service with DeepScaling: Daily CPU util.(every 1 min)

• Deployed in production environment

of Ant Group for 135 microservices.

• Running 10months w/o SLO issues.

• Resource saving in Oct, 2022:

Max: 44K core/day and 90 PB/day

Min: 19K core/day and 39 PB/day

Avg: 32K core/day and 66 PB/day

Service w/o DeepScaling:Daily CPU util.(every 1 min)

Online Showcase:

17



✦We proposed DeepScaling to achieve maximum resource savings by maintaining the

CPU utilization at a stable target level without loss in the quality of service

1. Spatio-temporal Graph Neural Network forecasts workload for each service accurately:

Learns relationship between different workload metrics and among services; uses service

call-graphs

2. Deep Neural Network: Estimates CPU utilization for different services

3. Model-based reinforcement learning model: generates the autoscaling policy.

✦ DeepScaling: Adopted in Ant Group for 130+ microservices related to payment systems

for daily automatic resource provisioning management.

✦ Saves 30K+ CPU cores/day on average, compared to previous rule-based solutions.

Conclusions

18


