ACM Symposium
on Cloud Computing

DeepScaling: Microservices AutoScaling for Stable
CPU Utilization in Large Scale Cloud Systems

Ziliang Wang!¢, Shiyi Zhu?, Jianguo Li?, Wei Jiang?,
K. K. Ramakrishnan?, Yangfei Zheng?, Meng Yan,
Xiaohong Zhang?!, Alex X. Liu?

wuks |0 KRIVERSIDE

Background: Microservices AutoScaling

User-facing latency-sensitive web services:

In production, the use of microservices, the number of
microservices and the scale of their deployment have
Increased rapidly

Most of these microservice workloads have fluctuations
(diurnal pattern, variability based on a periodic
pattern) following the ‘work cycle’

Different workload scenarios require different
amount of service resources to be configured

(===l =N
— el A A
NS R 0
—
-

°

—

Background: Existing Works

Rule-based Autoscaling: e.g., Kubernetes

« Set static thresholds (CPU, memory, request rate)
*Require significant domain knowledge from experts to set thresholds
appropriately; Hard to scale.

L_earning-based Autoscaling: e.g., Autopilot?, FIRM?

 Rarely consider resource wastage and SLO assurances together
 Often result in considerable overprovisioning

./\.' Cloud service providers conservatively provision excess
: resources to ensure service level objectives (SLOs) are met.

[1] Haoran Qiu et al. 2020. FIRM: An Intelligent Fine-grained Resource Management Framework for SLO Oriented Microservices. In USENIX OSDI 3
[2] Krzysztof Rzadca et al. 2020. Autopilot: workload autoscaling at Google. In EuroSys.

Background: Microservices in Ant Group

Typical microservices Arch and their workloads System Characteristics in Ant Group:
userlnfo userStroage F—DDB-ACC%S -: Page-View: . . . -
| RPC_];;[PC_m = == AT 4+ 3000+ microservices with diverse
@ Database o
RPC:

38.2% dominant workloads

4+ > 1 million pods/VMs

a2

4+ Avg 1 million accesses/min

oescst 4 SLO >=99.9995% in terms success

Files

File 1/0:17.41%

rate in minutes.

Results: Low CPU/Mem utilization

S P PR P PR P PR D PR PP LR P PR PP PP PP P PRSP D PSR PR PRI PSR PR P

6 Requirement: Improve resource utilization(CPU/Mem) while meeting SLOs,

DeepScaling: Maintain stable & high utilization

Can we keep a service at desired CPU utilization over time, while 1 : ‘

ensuring performance meets SLO through autoscaling? & ,Z

—

Step 1: Find the target CPU utilization to a level that can maintained at a stable
value while meeting SLOs
Step 2: Keep the service running at this target level consistently over time by
generating the recommended instances in advance for the near future

45

—— Non-DeepScaling
—— DeepScaling

(a
U30.
251

0 50 100 150 200 250
Time

e —

Target level

System Architecture of DeepScaling

4 Three innovative core modules:
(5) Workload forecaster,
(® CPU utilization estimator,
(7) Scaling decision-maker

o8- -
userinfo Service

e o o o = = ===

SISGE

gl ;

userStorage Service

e o o o === ==

Load
Balancer

Load
Balancer

Load
Balancer

D §§ ‘§§ RIS G |9 [N .4 Auxiliary modules:
TT | : ! \postStorage Service | - : .
| Message Service | Lanoital ki <> Service monitor;

. 3 <> SLO monitor;

1 Target level setting @ <> Tal’get Ievel Contl‘0||el’;
. I
?'\S/lerv_lce o 9 nstance < Instance (H PA) Controller;
onitor onitor >
#Instance

Controller
. i <> VPA Controller
VPA <> Load Balancer

Controller

#CPU Utilization

@— _@ # CPU Utilization _@ v

Workload CPU Scaling
Forecaster Utilization Estimator Decider

A

A 4

update

#Instance <

How to Find the Target CPU Level?

Service state initialized S=1

v
@ Target level controller initialized X

v

@@@ Generate N instances

A 4

A

Abnormal

3 A 4
Target level
Target level mmmm S X = X-8,
X=X+ ; v ! Service state
3 ' 5=0
1
! Target level ;
! X=X i
! i
: i
: Final State i
1

........................

6 is a constant value and is set to 5 by default.

S1. The target level controller is initialized, (X is CPU utilization %
set to historical average CPU seen for the service)

S2. Three ML models generates # instances for next (T+1) epoch
S3. Instance Controller complete resource management

S4. SLO monitor determines SLO status

IF The SLO monitor does not detects an SLO exception,

Target level controller increase the target level value (CPU util.)
Else:
Target level is not changed
IF SLO monitor detects SLO anomaly
Target level controller lower the target level, and Set S=0
S5. T=T+1 and back to Step 2

Core Modules for Autoscaling Recommendation

I " @ Workload Forecaster @ CPU Utilization Estimator @ Scaling Decider
- ol [S .
1 I : Multi-view fusion 1 : Graph Convolution Kernel :
L] [—— I : 1 I ID u .
I | Cl;l%ﬁ 1 | MainNet Acti
.) h Ve 1 mean ction
! RPC — ”l[t—n:t]l : : RPC — ing 4y — [
| . L : " I
: 1 Convid
- . : Soaf]tll‘nﬂx : O-
1 1 I
1 i I : MultivariateNormalDiag
= 1
. = : _H
i - | A:E _______________ ol | Msg — subesy
'Msg — sub[t_mt]! —- —
| I :
. . Spatial Graph-Conv
Lot — [T T Im [LIT]m
I] > - &
YN f N, - |
r [Spatial Graph-Conv —r=frm== tr=c=r=- 41--- e —
| Fle1/0 i | ! ostance | [Time | [serviee | _(Dsans)
- . | count stamp 1D | o
I I Temporal Conv . 3 . Experience Replay
- [I Update
1 | Spatial Convolution and Temporal Conveolution = 1
e it ==

1) Workload Forecaster: Predicting future workloads
2) CPU Utilization Estimator: Estimate CPU utilization according to predicted workload
3) Scaling Decider: Generate autoscaling strategies based on target level and estimated CPU

Our experimental results: 30 minute epochs (variable, they have experimented with different epoch values)

Module-1: Workload Forecaster

The workload forecaster characterizes the relationship among the seven workload metrics and interactions with
a service call graph by using a spatial-temporal graph neural network (STGNN).

e Graph Convolution Kernel:

® multiple workload metrics as a graph structure

® node represents different workload metrics

® edge indicates the relationship between them

-Msg — subp,_p t]I

! Spatial Graph-Conv
I I

X\ -I_ Temporal Conv .
N ' — @ Benefits:

Flle 1/0g Spatial Graph-Conv

: File /0444

Temporal Conv

S Comolton et Corvtion GNNs are able to model the interactions and relationships
within the multi-dimensional workload
Accurately predict well in advance for proactive scaling.

Module-1: Effectiveness in Workload Prediction

Performance comparison with state of the art methods: N-beats; Transformer
Compared Baselines:

« N-beats (ICLR 2020) — Deep NN w/backward and Result “\ Metric | |
forward residual links - MAE | Gain | RMSE | Gain
« Transformer (NIPS 2017) — based on the attention mech. Metho
N-beats 1.61 | 35.66% | 188.89 | 36.80%
Mean absolute error and RMSE for DeepScaling are better Transformer 1.39 | 25.26% | 166.95 | 28.51%
Importantly, STGNN in DeepScaling helps capture DeepScaling 1.04 - 119.37 -
(RPC-in) bursts -- Better Predictive Capability
Test case:
1.2 1= === True Value 0.7 g —=—— True Value 0.25 --— True Value OIBLJ " -—— True Value
o os B - Doy | 07 1 s
1.0 ,Tm A —— N-beats 05 r —s— N-beats 020 —— N-beats U.GW i i —— N-beats
%0.8 s %oa M | §0I15 Eo.s A Eﬂ;
206 L:'l N P 30,4 :
o | g0 Eo.lo § 203 fq
e 0.4} %0.2 uD: 0.2
B AL |
0.0 M 0.0 eved B perrenen™’] 0,00 ! S, W O.OVUF’ bendt J
0 20 40 1@‘0 (3'_0 1?0 120 140 0 20 40 qu (8.0 tl(.;!o 120 140 0 20 40 60 (ao 1(;0 120 140 0 20 40 Tso (ao tl(;O 120 140
ime(minutes ime(minutes Time(minutes ime(minutes

(a) RPC-in (b) RPC-out (c) DB-Acess (d) PV

Module-2: CPU Utilization Estimator

CPU utilization estimator characterizes microservices with 7 workload metrics along with 3 specific auxiliary
features with a probabilistic regression network for accurate CPU level estimation

) CPU Utilization Estimator Needed to handle high variability of instantaneous CPU utilization
= _ 3 specific auxiliary features:
.'. :M mean__(1) Instance-count: the number of instances for each microservice
RPC —ingsa 8 ___’.
m[e) 1) Service-1D: the unique identifier of each microservice
I\EltivariateNonna]Diag
- @ Time-stamp: the time-stamp during the day, in minutes, when the
Msg - subi.s workload metrics are collected/forecast
D ID
= & 8 @ Benefits
File 1/0 Time Count
e s I e i Specific auxiliary features can comprehensively characterize the
|| Instance Time Service service’s workload (e.g., load from timed tasks or system ovhd.)
I count stamp ID

! for accurate estimation of the CPU utilization

11

Module-2: CPU Estimation Performance

Performance comparison with SOTA method:
Compared baselines:

* Reg _ (FGCS 2011) — linear regression Method | MAE | Gain | RMSE | Gain | Max, o,
* Analytical -(JCC 2019) - SVM R 144 | 548% | 2.26 | 64.15% 21.06
 BAPA (TSC 2020) — decision tree regressor Eg_ ' B N e '
Analytical | 1.99 | 67.3% | 297 | 72.72% 20.96

DeepScaling: MAE is at least 2x better than others BAPA 1.25 | 48.0% | 2.11 |[61.61% | 21.97
Max Error much lower. DeepScaling | 0.65 - 0.81 - 2.69
Test case:

35 : B?:p:z::;g 35 — 1[;[;1: Value 35| — 'll_';ue Value 35| — ;C:: Value

30 30 30 30

25 25 25 25

=

2
20 20 & 20 20
15 15 a 15 15
10 10 10 10

0 10 20 30 20 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Time (minutes) Time (minutes) Time (minutes) Time (minutes)

(a) DeepScaling (b) DTR (c) LR (d) SVM 12

Module-3: Autoscaling Decision Making

DeepScaling uses a DON-based Reinforcement Learning network along with the CPU
utilization estimator to generate an autoscaling strategy.

CPU Utilization
Estimation

CPUt44

Count

ID

A

Update

(4)
(ID,s,a,r,s")

Scaling Decision

MainNet)
Action ;4

TargetNet

Experience Replay

Action-space: F(Count),Fe{Increased, Decreased, Unchanged}
State-space: (Service-ID, cpu-util), where O<cpu-util< 100

Reward function:
Target Level

/

X s+ XL s = XT > s = X
X = |11 — X| otherwise.

\

CPU utilization
Learning policy:

L(®) = E[(r + y max Q(s’,a’;®;i_1) — O(s, a; P;))?]
@ ')

TargeNet output MainNet output

13

Evaluation Dataset(1)

For the evaluation of Workload Predictor and CPU Utilization Evaluator:
58 different kinds of real microservices from Ant Group

€ The main task is to provide a high availability online payment platform
€ the services are usually accessed more than 500 million times everyday
€ We collected their workload data and CPU utilization data for one month

DB-Access
userInfo]—P[userStroage J‘—b
b_'

C-1n | RPC-out RPC-in ——
Database

File /'O

Files

14

Evaluation Dataset(2)

Overall DeepScaling system performance evaluation:

5 microservices from 58 which forms a minimal, full-functional service chain
Debug and evaluate in an internal simulation environment

Table 4: Workload metrics of the Sample Service (Times/minute)

NO. | RPC-in | RPC-out | Msg-pub | Msg-sub | DB-Access | File I/O PV
Al | 6.7x10° | 3.4x 107 | 2.7x10° | 3.5%x10° | 7.7x10% | 3.7x10° | 1.9 x 10°
A2 | 2.5%10° 0 1.3x107 | 3.4x107 | 2.0x10® | 7.1 x10° 0

A3 | 48x10% | 6.4%x10° | 1.4x10* | 1.9%x10* | 6.8x10° | 2.1x10° | 2.9 % 10’
A4 | 1.4x10° 0 0 1.0x 10> | 8.0x10° | 3.2x10° 0

A5 | 4.1x10° | 9.3 % 10’ 0 28x10° | 1.1x10° | 1.2 x 10° 0

* Al is a database dominated microservice.

« A2 is a messaging middleware microservice.

« A3 is a web page microservice with an average of 290,000 visits per minute.
* A4 is a RPC-in dominated microservice.
« A5 is a core file microservice with significant File I/O and msg-sub.

Each microservice
has diff. workload
characteristic

15

Administrator typically set # instances for each microservice to be 1800, when no autoscaling was used

Overall Performance of AutoScaling

Compared Baselines:

* Rule-based

* FIRM (OSDI-2020@UIUC)
 Autopilot (Eurosys-2020@Google)

Different approaches w.r.t. CPU utilization

Ws—5—% 5 6 7 8 Y3 3 4 5 6 7 8

Time(days) Time(days)

(a) CPU (Service A1) (b) CPU (Service A2)

Different approaches w.r.t. #Instances

pil 71

\] [
| . 2s00) | L -
1400)) Lo L | L
[20001

1600

e-Cc
=
=]
=1
=]

~

Instance-count

J
|

g " Fr

5 oo’ \\’*\‘ (;

L]

£ 6000 suropiot \ Ilw’r'u'"f

Deepscaling \... ;_ﬂ ri | — Deepscaling
Rule-based \

\, iy
FIRM -\,.-.\-‘:L.I"j:"_‘f— — FEM _\

0 200 400 600 800 1000 12001400 0 200 400 600 800 1000 1200 1400
Time(minute) Time(minute)

(c) Instance count (Service A1) (d) Instance count (Service A2)

Performance comparison with SOTA method

R
wn
2
"’ |
Iu I [| DeepSaclmg' I‘ I
20 I Autopilot
I FIRM
I Rule-based
0 Al A2 A3 Ad A5

(a) Relative CPU stability rate

DeepScaling improves RCS by 61.1%,
40.8%, 24.6% over compared methods.

RCS = y,/1440

y, . #minutes when the CPU utilization
fluctuates around the target level.

100

80

-

2 60
: [
o
40 l I
I DeepSacling
20 I Autopilot
I FIRM
[Rule-based
0

Ad A5

(b) Relative resource utilization

DeepScaling improves RRU by 49.4%,

20.2%, 14.0% over compared methods.
RRU =C/C,

C: #instance for the particular method

C,: #instance by the rule-based method
16

Adoption of DeepScaling in Ant Group

* Deployed in production environment 35 s
of Ant Group for 135 microservices. 70 30 397 . .
1 H 80.6 354 35.235.2
* Running 10months w/o SLO issues. o (TR BREC I R P
- - 66.7 28.7

* Resource saving In Oct, 2022: U 20 ..,

Max: 44K core/day and 90 PB/day s™ *~ o 189 189

] S 30
Min: 19K core/day and 39 PB/day 2 S .
Avg: 32K core/day and 66 PB/day 10 .
0
. 0
Online Showcase: 1234567891011 R213141516 17 2 3 45 6 7 8 9 1011 12 13 14 15 16 17
Time Time
Service w/o DeepScaling:Daily CPU util.(every 1 min) Service with DeepScaling: Daily CPU util.(every 1 min)
60 60

5 5
EQO \J g

06-03 00 06-03 03 06-0306 06-0309 06-03 12 06-0315 06-03 18 06-03 21 06-04 00 07060400 060403 060406 060409 060412 060415 060418 060421 06-05 00

Time Time

17

Conclusions

4+ \We proposed DeepScaling to achieve maximum resource savings by maintaining the
CPU utilization at a stable target level without loss in the quality of service

1. Spatio-temporal Graph Neural Network forecasts workload for each service accurately:
Learns relationship between different workload metrics and among services; uses service
call-graphs

2. Deep Neural Network: Estimates CPU utilization for different services

3. Model-based reinforcement learning model: generates the autoscaling policy.

4 DeepScaling: Adopted in Ant Group for 130+ microservices related to payment systems
for daily automatic resource provisioning management.

4+ Saves 30K+ CPU cores/day on average, compared to previous rule-based solutions.

18

