
Yongkang Zhang†*, YinghaoYu*, Wei Wang†, Qiukai Chen*, Jie Wu*, Zuowei Zhang*, Jiang Zhong*, Tianchen Ding*, Qizhen Weng†*,
LingyunYang†*, Cheng Wang†*, Jian He*, GuodongYang* , Liping Zhang*

Workload Consolidation in Alibaba Clusters
The Good, the Bad, and the Ugly

†Hong KongUniversity of Science andTechnology *AlibabaGroup

Table of Contents

•Background
•Cluster-wide Macro-management
•Node-level Micro-management
•Handling Seasonal Shopping Festivals: A Case Study
•Conclusion

Background

1

Alibaba’s E-commerce Businesses

• Alibaba is one of the largest IT giants in the world……

• Alibaba’s businesses are developed on a wide range of technology stacks.

Images credit to Wikipedia: https://www.wikipedia.org/
2

https://www.wikipedia.org/

Alibaba’s Workload Management
System
• The scale of Alibaba’s clusters:
• Dozens of large clusters.
• A few hundred ~ more than 10k machines in each cluster.
• Hundreds of thousands of machines in total.
• Tens of millions of CPU cores and tens of thousands of GPUs.
• Millions of service instances.

• Two types of workloads:
• Long-running, latency-critical (LC) services.
• Throughput-oriented batch jobs.

3

Design Principles

•Objectives
• Reduce the resource provisioning cost without violating the

Service-level Objectives (SLOs) of applications.

• Transparent to applications.

• Generally applicable to a range of services and frameworks.

4

Cluster-wide Macro-Management

5

The Problem of Overcommitment

• Diurnally changing LC services.
• The diurnal pattern of CPU & GPU utilization

creates opportunities for overcommitment.
• Host and GPU memory limit the

overcommitment at night.

• The memory bottleneck.
• Unlike CPUs and GPUs, the host and GPU

memory footprints of LC services stay
relatively stable.
• Batch jobs request more memory……

• Aggravates this problem.

GPU Memory
The memory utilization of 100

LC services (usage / request, %).

Host Memory

6

Memory Reclamation

• Tracking memory idleness.
• Following Google’s kstaled [1], we

added kidled [2] into the Linux
kernel to periodically mark the age of
reclaimable pages.

• A large number of reclaimable idle
pages exist in LC services.
• Around half of swappable anonymous
pages have an age ≥ 48 hrs.

• Around half of clean file pages have an
age ≥ 3 hrs.

Swappable anonymous pages

The distribution of (Reclaimable page / total
memory usage) of LC services running on each

machine in a cluster by the age (last access time)
of memory pages.

Clean file pages

[1] kstaled. https://lore.kernel.org/lkml/20110922161448.91a2e2b2.akpm@google.com/T/.
[2] kidled. https://github.com/alibaba/cloud-kernel/blob/linux-next/mm/kidled.c.

7

https://lore.kernel.org/lkml/20110922161448.91a2e2b2.akpm@google.com/T/
https://github.com/alibaba/cloud-kernel/blob/linux-next/mm/kidled.c

Memory Reclamation

• Proactive memory reclamation.
• Reclaim pages with an age longer than a threshold tuned by small-

scale experiments on representative LC services.
• Use memory pressure stall information (PSI) [1] to detect memory

pressure and evict batch jobs.
• Please refer to our paper for more details.

[1] Tracking pressure-stall information. https://lwn.net/Articles/759781/. 8

https://lwn.net/Articles/759781/

Memory Reclamation

•Proactive memory reclamation.
• Deployment results (median
utilization, %):
• Anonymous pages: 74% -> 67%
• File pages: 13% -> 4%

File / anonymous page utilization
before and after memory reclamation.

9

Memory Reclamation

•Proactive memory reclamation.
•No significant impacts on LC

services in terms of:
• CPI (cycles per instruction) [1]

• Average service response time
CPI (cycles per instruction)

Comparison of LC services’ performance
before and after memory reclamation.

Average response time

[1] Zhang et al., CPI2: CPU performance isolation for shared compute clusters. In Proc. ACM EuroSys 2013.
10

Tidal Scaling

•Memory reclamation is insufficient.
• Cannot be applied to GPU memory.
• The resulting memory utilization still has no clear diurnal

pattern.

•Why not use vertical scaling / horizontal scaling?
• Fine-grained vertical scaling is insufficient.
• Horizontal scaling cannot be directly applied.

11

Tidal Scaling

• Bimodal instance.
• Applied to LC services with diurnal traffics.
• Two states:
• Running instances: actively serve user requests and consume resources.
• Dormant instances: no running process and resource consumption.

• A bimodal instance can rapidly change its state by:
• Starting processes before the day’s traffic picks up.
• 🌛->🌞 : Dormant -> Running

• Terminating processes before the night arrives.
• 🌞->🌛 : Running -> Dormant

12

Tidal Scaling

• Evaluation.
• #0, 1: LC services that only

consume CPUs.
• # 2-9: LC services that consume

both CPUs and GPUs.
• No significant variations in

service response time (RT).
Service RT (normalized by each application’s
daily average) when tidal scaling is enabled.

13

Tidal Scaling

• Evaluation.
• #0, 1: LC services that only

consume CPUs.
• # 2-9: LC services that consume

both CPUs and GPUs.
• Create a diurnal pattern for host

& GPU memory. Host memory utilization
(usage / request, %) of LC

services

GPU memory utilization
(usage / request, %) of LC

services

14

Tidal Scaling

• Evaluation.
• #0, 1: LC services that only

consume CPUs.
• # 2-9: LC services that consume

both CPUs and GPUs.
• Keep CPU & GPU utilization

stable.
CPU utilization (usage /

request, %) of LC services
GPU utilization (usage /

request, %) of LC services

15

Node-level Micro-management

16

CPU Jitters

• Alibaba’s applications have tiny CPU load spikes……

The CPU usage trace of a CPU-bursty LC service in
different time scales. 17

CPU Jitters

• CFS controller throttles the application’s CPU usage when CPU
jitters occur and exceed the CPU limit.

The CPU usage trace of a CPU-bursty LC service in
different time scales.

: CFSThrottles

18

CPU Jitters

• Shared CPU pool for CPU-bursty
applications.
• CPU-bursty hyper-threads running on

paired logical cores could contend for
resources.

Thread 2
(Non-bursty)

Thread 1
(CPU-bursty)

Logical Core 1 Logical Core 2

Physical Core

19

CPU Jitters

Node

Shared CPU Pool

Other CPU Cores

• Shared CPU pool for CPU-bursty
applications.
• Set up a shared CPU pool on each node

for CPU-bursty applications.

20

CPU Jitters

• Shared CPU pool for CPU-bursty
applications.
• Set up a shared CPU pool on each node

for CPU-bursty applications.

• Divide LC applications into two
categories: exclusive and shared.

Node

Shared CPU Pool

Other CPU Cores

Shared
Applications

Exclusive
Applications

21

CPU Jitters

• Burstable CFS (Completely Fair Scheduler) Controller [1].
• Use token bucket to carry over some unused quotas to future CFS

periods.

CFS
Period1 2 3 4 5 6

CPU
Util.

CFS
Limit

CFS
Period1 2 3 4 5 6

CPU
Util.

CFS
Limit

CFSThrottles Add burstable
bucket into
CFS controller

[1] Burstable CFS bandwidth controller. https://lwn.net/ml/linux- kernel/20210202114038.64870-1-
changhuaixin@linux.alibaba.com/.

22

https://lwn.net/ml/linux-%20kernel/20210202114038.64870-1-changhuaixin@linux.alibaba.com/

CPU Jitters

• Production Deployment (160k LC
instances).
• Shared LC instances being throttled

during peak time: 73.4% -> 0.12%.
• 10 – 35% reduction in the average RT

enabled by our approach. Average response time of 5
representative CPU-bursty LC

services after enabling our
solution (normalized by the daily
average before the deployment)

23

Variations on Memory Bandwidth

• Variations in memory bandwidth
are prevalent.
• Especially in batch jobs with

different computing phases.
• Around 12% of the machines have

memory access latency 1.5 - 8x
longer than the average due to high
memory bandwidth utilization.
• Excessive memory bandwidth

utilization undermines LC services’
QoS.

The memory bandwidth consumption
of 3 batch job instances (estimated by

L3 cache misses per second and
normalized by the maximum)

24

Variations on Memory Bandwidth

•Memory bandwidth control using
Intel’s Dynamic Resource Control
(DRC) [1].
• LC services’ CPI: no noticeable changes.
• Median memory memory access

latency: ~100 ns -> ~140 ns.
• Median memory bandwidth utilization:

~15% -> ~30%.
• The throughput of batch jobs also sees

an order-of-magnitude improvement.
[1] Zhang et al., LIBRA: Clearing the Cloud Through Dynamic Memory Bandwidth Management. In Proc. IEEE HPCA
2021

Architectural overview of
Dynamic Resource Control [1]

25

Handling Seasonal Shopping
Festivals
A Case Study

26

Handling Seasonal Shopping
Festivals: A Case Study
• Alibaba’s e-commerce platform hosts a number of Seasonal Shopping

Festivals (SSFs) around the year, e.g., on Nov. 11.
• Please refer to our paper for more details.

Full-day sales on Tmall of an SSF held on Nov. 11, 2020:
498.2 billion RMB ($68.2 billion USD)

Image credit to Xinhuanet: http://www.xinhuanet.com/english/2020-11/12/c_139511564.htm
27

http://www.xinhuanet.com/english/2020-11/12/c_139511564.htm

Conclusion

• Cluster-wide macro-management:
• Host & GPU memory are the bottlenecks in resource

overcommitment.
• Proactive memory reclamation.
• Tidal scaling.

28

Conclusion

• Node-level micro-management:
• CPU tiny jitters and memory bandwidth contention can

undermine LC services’ QoS.
• Shared CPU pool and burstable CFS controller to reduce the

impacts of tiny CPU spikes on applications’ performance.
• Introduced Intel’s Dynamic Resource Control (DRC) to adaptively

regulate memory bandwidth contentions among applications.

29

Conclusion

• Handling seasonal shopping festivals:
• We leveraged these techniques in our shopping festivals to handle

exponentially surging user traffic at minimum resource cost.

30

Acknowledgement

•We thank numerous colleagues at Alibaba who have
implemented and maintained this system.

31

