
Cypress: Input size—Sensitive Container Provisioning
and Request Scheduling for Serverless Platforms

Vivek M. Bhasi, Jashwant Raj Gunasekaran, Aakash Sharma,
Mahmut Taylan Kandemir, Chita Das

ACM SoCC ’22
November 8-10, 2022

Emerging Apps for Serverless

Serverless Characteristics

Short-running

Easy-to-Manage

Instant Scalability

Fine-Grained Billing

Target Applications

The growing popularity of Serverless is being accompanied by an increased
variety of apps being deployed on them

QR Code Generator Sentiment Analysis

Text-to-Speech Audio Translation

Interactive

Serverless 101

Audio Transcribe Send MessageText Translate

Stages in Audio Translation

Containers for each function

Users

SLO*: 1000ms

Response

*Related Work:
Kraken [27], Fifer [40], Atoll [55]
References in paper

Functions can process user-provided
inputs

Request

Input Size—Sensitive Functions
• Input-sensitive profiling ➔ exec time depends on input size for such functions

• Such functions: Input size—Sensitive functions (IS functions)

Input Size Execution Time

Challenges due to IS Functions

Assumption*: Each request triggers the same execution time for a function;
Hence requests batched uniformly for the same function

requests

*Related Work:
Kraken [27], Fifer [40]
References in paper

containers

Challenge 1:
Input size—Sensitive Container

Allocation

Challenges due to IS Functions

Reality: Each request triggers an execution time dependent on the input size to the function;
Hence requests have to be batched according to actual execution times

containers
requests

* w.r.t the relative input sizes
associated with the majority of
requests

Challenge 1:
Input size—Sensitive Container

Allocation

light* heavy*medial*

Challenges due to IS Functions

Moreover, input size distribution of future requests has to be predicted as well to provision
containers in advance to hide cold starts

light heavymedial

= y %

= z %

= x %

Predict input size distribution Infer fraction of requests Scale containers accordingly

Challenge 1:
Input size—Sensitive Container

Allocation

Challenges due to IS Functions
Challenge 1:

Input size—Sensitive Container
Allocation

Input size—Sensitive Profiling (IS Profiling)* can be used to estimate the execution times of
functions, given their input sizes

Opportunity 1: Input size—
Sensitive policies for predictive

scaling and request batching

Observe execution time vs input size
characteristics of functions over multiple

runs for various input sizes

*For further details about IS profiling, please refer the paper

Use linear/powerlaw regression to build a
model that predicts the function execution

time using input size

Challenges due to IS Functions
Challenge 1:

Input size—Sensitive Container
Allocation

IS profiling can be integrated into policies as necessary to enable input size distribution
prediction and Input size—Sensitive Batching (IS Batching) for proactive container allocation

Opportunity 1: Input size—
Sensitive policies for predictive

scaling and request batching

Use a statistical model for input
size distribution prediction

+

Perform IS Batching akin to First Fit
Bin Packing

Challenges due to IS Functions
Challenge 1:

Input size—Sensitive Container
Allocation

For motivation, we conduct a mini-experiment comparing IS Batch (our policies so far) vs
policies with no request batching and statically-computed batch sizes

Opportunity 1: Input size—
Sensitive policies for predictive

scaling and request batching

IS Batch is seen to provision the appropriate # containers for both input size distributions for the Sentiment Analysis app under
Poisson trace (mean = 100rps)

Challenges due to IS Functions

Challenge 2:
Improving SLO compliance

Although IS Batch allocates the appropriate # containers, the SLO compliance can be improved

Main Problem: Containers allocated to meet a request’s SLO without considering its
position in the execution queue

Despite having lesser buffer time to execute, a heavier request is scheduled after a light one in this example

Challenges due to IS Functions

Challenge 2:
Improving SLO compliance

Now, incorporating IS Reordering into the existing IS Batch scheme to prioritize requests with
lower slack, we get the IS (Batch + RR) scheme

IS (Batch + RR) is observed to improve SLO compliance considerably while maintaining the same, minimal #
containers. Below is a table comparing SLO compliance for the previous experiment for the light distribution

Opportunity 2: Input size—
Sensitive Request Reordering

No Batch Static Batch IS Batch IS (Batch + RR)

99.99% 97.78% 99.35% 99.98%

Challenges due to IS Functions

Challenge 3:
Multi-function apps

While the policies mentioned so far can be effective for single-function apps, they may not suffice
for multi-function apps (composed of ‘function chains’)

Problem 1: The input size distribution to each function
will be different as each function processes its inputs
before sending it to subsequent functions. Thus,
proactive scaling becomes challenging.

Problem 2: The prediction errors for execution times,
request load and input size distributions can accumulate
and reactive scaling may not be sufficient to counteract
this while ensuring SLO compliance.

i/p size distr 1 i/p size distr 2 i/p size distr 3

func 1 func 2 func 3

Challenges due to IS Functions

Challenge 3:
Multi-function apps

Introduce policies that are cognizant of particular aspects of function chains

Chained Prediction (CP): Use a variation of IS Profiling
to predict the output size distribution of each function
given its input. This enables proactive provisioning for
multi-function apps.

Look-Ahead Scaling (LAS): Scale containers appropriately
for descendant functions as requests arrive at the initial
function(s). Thus, enough buffer time for scaling
containers in response to the actual i/p size distribution

i/p size distr 2 i/p size distr 3

func 1 func 2 func 3

Opportunity 3: Chained Prediction
+ Look-Ahead Scaling

i/p size distr 1

CP CP

func 1 func 2 func 3

i/p size distr 1

Look-Ahead Scaling

Challenges due to IS Functions

Challenge 3:
Multi-function apps

To demonstrate the benefits of CP and LAS, we conduct a mini-experiment

Adding CP and LAS on top of existing policies are
shown to improve the E2E response time as well as

SLO compliance

Opportunity 3: Chained Prediction
+ Look-Ahead Scaling

Enabling CP allows the appropriate # containers to be spawned
for each function. LAS spawns them as requests arrive (not
reactively) ➔ improves response time and SLO compliance

PS

x x x x x x x
Predicted Request Queue(s)

CP

Putting it all together: Cypress

64 168 55 72 120 216 96

Application

55 64 72 96 120 168 216

ISR

55 64 72 96 120 168 216

ISB

Incoming Request Queue

Input Size

ISR IS Reordering

ISB IS Batching RS Reactive Scaler

LAS Look-Ahead Scaler

Function 1 Function 2 Function 3

ISR

ISB

ISR

ISB

RS RSRS

Container

Batched Requests

Container Scaling

PS Proactive Scaler

CP Chained Prediction

LAS

Input size–Sensitive == True? CP

Queue Head

Experimental Setup
Platform: OpenFaaS + Kubernetes

Hardware: 6 node cluster (Intel CascadeLake with 48 cores, 192 GB RAM and 1 TB
storage each) with 10 Gigabit Ethernet

Evaluation Methodology:

• Traces: Poisson (mean rps = 250 rps) , Wiki, Twitter (peak rps up to 250)

• Apps: Sentiment Analysis, QR Code, Image Compression,

Email Categorization, Audio Translation

• SLOs: Maximum execution time (function) + 20%

• Schemes: Atoll, Kraken, Fifer, IS Batch

Evaluation: # Containers vs SLO compliance

• Similar patterns are seen for multi-function apps as well

• Atoll spawns the most containers regardless of i/p size distribution due to the lack of
request batching

• Kraken and Fifer either over-provision or under-provision depending on the i/p size
distribution due to request batching using avg. function execution times

• IS Batch spawns the same # containers as Cypress but has lesser SLO compliance due to it
not having IS Reordering, LA Scaling

Evaluation: Response Time Distribution and
Resilience to Erratic Traces

• Cypress remains well within the SLO for the majority of application-trace-input
distribution combinations at the tail (P99)

• In particular, for the erratic trace (Wiki), we see that Cypress performs better than all
other schemes. For this example, it is likely due to IS Reordering

Evaluation: Energy Consumption

• Here, Cypress uses 19-23% lesser energy than other Atoll, Kraken and Fifer in
the shown example for the heavy distribution

• Note that for the light distribution, although Kraken, Fifer may spawn lesser
containers than Cypress, the energy difference between them is 1-2% only

Concluding Remarks

• Adopting the serverless platform for input size–sensitive apps introduces
critical request scheduling and resource management challenges for the
provider

• To address these, we introduce Cypress, an Input size—Sensitive RM
framework

• Cypress uses various scaling services that leverage its policies to spawn up to
66% fewer containers, thereby improving cluster-wide energy savings up to
2.95x while remaining highly SLO compliant

Thank You!

