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GPUs are everywhere in the cloud..



...but, they are severely underutilized
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The state-of-the-art deep learning models utilize less 50% of the GPU
resources on modern A100 GPUs and utilization varies significantly
over run time



...but, they are severely underutilized

Up to 50% of the GPU jobs may
have less than 25% utilization
on multi-tenant clusters
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Opportunities, and Implications
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What is a potential solution?

GPU resource sharing allows better
utilization



GPU Resource Sharing Allows Better Utilization

Multi-Process Service (MPS) Multi-Instance GPU (MIG)
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[4] https://docs.nvidia.com/deploy/mps/index.html
[5] https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html



MPS and MIG Sharing Mode Trade-Offs
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Multi-Instance GPU (MIG) on NVIDIA GPUs

Different MIG slices
on an A100 GPU
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[5] https://docs.nvidia.com/datacenter/tesla/mig-user-
guide/index.html



Challenges in GPU Resource Partitioning

Brief experimental insights and motivation



Observation 1. Compared to MPS, MIG-based

partitioning is more promising, but challenging
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MIG’s interference-free partitioning provides an opportunity for
higher performance than MPS’s interference-prone partitioning

Optimal GPU resource partitioning using MIG slices varies
significantly across job mixes



Observation 1l. Determining effective MIG-based

partitions incurs higher overhead
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A job-mix four jobs requires
exploring multiple MIG
configurations
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Determining the optimal MIG partition
configuration for a job-mix , requires
knowing individual job’s speedup on
all different MIG slices.

But profiling the performance speedup
for all jobs on every MIG slice in the
MIG mode causes prohibitive
checkpoint-restart overhead, unlike
the MPS-mode .



MISO: Key Idea

NI

- MISO leverages the flexible but
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higher performance for multi-tenant GPUs

MISO leverages best of the both the worlds (MPS and MIG): MPS
for profiling and performance estimation, MIG for interference-free
resource partitioning.



Overview of the MISO Design

Job Queue Server
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Communicates
via Server API

MISO uses lightweight MPS-mode run to quickly estimate jobs’
performance on different MIG configurations using a machine learning
model, and then partition the GPU resources intelligently.



MISO’s Job MIG Performance Estimator
Using MPS mode

Observation: Under MPS-mode, one can adjust GPU sharing levels for
concurrently jobs in a job mix without frequently switching jobs in and out of

the GPU.
MISO uses this flexibility to estimate performance on different MIG slices.
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MISO’s Job MIG Performance Estimator

Encoder 1 Decoder 1

Jobs: Slices: 79, 49,
J1, J2, J3 Encoder 2 Decoder 2 39, (29, 19)
enter
@ Run ﬁ
. ° o Perf.
o ° .
MPS 256 : MIG
Mode Mode
Data 32 30 Predict

Train a U-Net variant to translate the MPS performance into MIG performance
The 2g and 1g MIG slices can be extrapolated from 7g, 49, 3g MIG performance



MISO’s MIG Partition Optimizer
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Algorithm 1: MISO’s partition optimizer.

best_obj « 0 // Maximum objective so far
best_config « None // Best partition so far
Pyariq < list of Ppjg partitions whose length equals m
foreach ¥ in P, ;;; do

obj_func « »72, fi(x;)

if obj_func > best_obj then
best_obj « obj_func
best_config « x
end

end
return best_config

MISO quickly finds the optimal MIG partition without heuristics
Focuses on optimizing each GPU locally

Avoids overhead from the global NP problem

Avoids extra job checkpointing between GPU nodes



MISO: Evaluation and Insights



Experimental Methodology

d Average Job
Completion

Time (JCT)
d Makespan

d System
Throughput

formjobs J, to ],
suppose job J,’s
execution speed on an
A100 GPU without co-
location is p, , and its
current execution speed

IS g

1 4-node system

J 2 AMD EPYC
7542 CPUs
each node

J 2 NVIDIAAL100
GPUs each
node

m
System Throughput (STP) = fT’
i=1 It

|

J Helios Trace [6]
(L21)

] Poisson
distributed
arrival

d Deep learning
workloads
including BERT,
GNN, CycleGAN.

J

J

J

|

NoPart: no
partition

OptSta:
optimal static
MIG
partitioning

ORACLE:
knows MIG
speedup for
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MISO offers significant improvements
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MISO outperforms across different scenarios
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MISO Summary of Key Contributions
MISO is the first method for GPU resource partitioning on N
a MIG-enabled multi-tenant GPU cluster. niis :> !

MISO combines the best of both worlds (MPS and MIG).

MISO uses the lightweight MPS profiling to quickly
estimate the optimal MIG partition without the excessive wra]
overhead to profile each job’s MIG slice performance.

Slices: 79, 49,
39, (29, 19)

Perf.ﬁ
|:> MIG
Mode

Contact
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