
Achieving Low Latency in Public Edges by Hiding 
Workloads Mutual Interference

Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, Xiaoning Ding

1

The University of Rhode Island New Jersey Institute of Technology Hofstra University



Background: edge cloud and its applications

• Edge cloud is a tiny cloud deployed

close to end users.
− Constrained computer resources.
− Low latency.
− E.g., AWS local zones.

• Edge cloud is dominated by latency sensitive apps that require low latency 
and high resource demanding.

− E.g., microseconds for autonomous vehicles/robots and AR/VR.

− Edge applications usually generate large amount of data for computation.
▪ Resource-constrained end devices cannot afford the computation.

High latency
Low latency

2



Background: edge cloud and its applications

• Edge cloud is a tiny cloud deployed

close to end users.
− Constrained computer resources.
− Low latency.
− E.g., AWS local zones.

• Edge cloud is dominated by latency sensitive apps that require low latency 
and high resource demanding.

− E.g., microseconds for autonomous vehicles/robots and AR/VR.

− Edge applications usually generate large amount of data for computation.
▪ Resource-constrained end devices cannot afford the computation.

High latency
Low latency

3



Resource sharing increases edge app mutual 
interference and latency
• Multiple applications from different users share the same edge server.

− Execution of an app contends resources and interferes with execution of other apps.
▪ Interference may cause significant performance penalties if not well controlled.

• Resource contention and apps mutual interference are unavoidable in edge 
cloud!

− Limited number of edge servers host large number of apps.
▪ Hard to effectively distribute and separate interfering apps across different servers.

− Resource usage patterns of edge applications may change dynamically.
▪ Hard to predict which apps may interfere with each other.

• Problem: how to efficiently schedule latency sensitive apps to reduce their 
mutual interference and latencies in edge cloud.

− This problem is under-studied in edge cloud scenarios.

4



Resource sharing increases edge app mutual 
interference and latency
• Multiple applications from different users share the same edge server.

− Execution of an app contends resources and interferes with execution of other apps.
▪ Interference may cause significant performance penalties if not well controlled.

• Resource contention and apps mutual interference are unavoidable in edge 
cloud!

− Limited number of edge servers host large number of apps.
▪ Hard to effectively distribute and separate interfering apps across different servers.

− Resource usage patterns of edge applications may change dynamically.
▪ Hard to predict which apps may interfere with each other.

• Problem: how to efficiently schedule latency sensitive apps to reduce their 
mutual interference and latencies in edge cloud.

− This problem is under-studied in edge cloud scenarios.

5



Resource sharing increases edge app mutual 
interference and latency
• Multiple applications from different users share the same edge server.

− Execution of an app contends resources and interferes with execution of other apps.
▪ Interference may cause significant performance penalties if not well controlled.

• Resource contention and apps mutual interference are unavoidable in edge 
cloud!

− Limited number of edge servers host large number of apps.
▪ Hard to effectively distribute and separate interfering apps across different servers.

− Resource usage patterns of edge applications may change dynamically.
▪ Hard to predict which apps may interfere with each other.

• Problem: how to efficiently schedule latency sensitive apps to reduce their 
mutual interference and latencies in edge cloud.

− This problem is under-studied in edge cloud scenarios.

6



Existing cloud solutions are not effective for edge cloud

• Resource over-provisioning (Mengwei Xu et. al.[IMC ‘21]).
− Significant resource waste.

▪ Average CPU utilization is about 6x lower on edge servers than on cloud servers.

• Collocating best-effort apps with latency sensitive apps (PARTIES[ASPLOS ‘19]).
− Edge cloud is dominated by latency sensitive applications.

• Avoid collocating applications that interfere with each other (Bolt[ASPLOS ‘17]).
− Hard to predict which apps may interfere with each other due to app execution dynamics.

• Resource partitioning (Heracles[ISCA ‘15]) can barely help due to app dynamic 
resource usage.

− Infrequent adjustment of resource partitions may not help.

▪ Resources are not adapted to resource demand of the workload.

− Frequent adjustment may lead to high overhead.

7



• Resource over-provisioning (Mengwei Xu et. al.[IMC ‘21]).
− Significant resource waste.

▪ Average CPU utilization is about 6x lower on edge servers than on cloud servers.

• Collocating best-effort apps with latency sensitive apps (PARTIES[ASPLOS ‘19]).
− Edge cloud is dominated by latency sensitive applications.

• Avoid collocating applications that interfere with each other (Bolt[ASPLOS ‘17]).
− Hard to predict which apps may interfere with each other due to app execution dynamics.

• Resource partitioning (Heracles[ISCA ‘15]) can barely help due to app dynamic 
resource usage.

− Infrequent adjustment of resource partitions may not help.

▪ Resources are not adapted to resource demand of the workload.

− Frequent adjustment may lead to high overhead.

8

Existing cloud solutions are not effective for edge cloud



• Resource over-provisioning (Mengwei Xu et. al.[IMC ‘21]).
− Significant resource waste.

▪ Average CPU utilization is about 6x lower on edge servers than on cloud servers.

• Collocating best-effort apps with latency sensitive apps (PARTIES[ASPLOS ‘19]).
− Edge cloud is dominated by latency sensitive applications.

• Avoid collocating applications that interfere with each other (Bolt[ASPLOS ‘17]).
− Hard to predict which apps may interfere with each other due to app execution dynamics.

• Resource partitioning (Heracles[ISCA ‘15]) can barely help due to app dynamic 
resource usage.

− Infrequent adjustment of resource partitions may not help.

▪ Resources are not adapted to resource demand of the workload.

− Frequent adjustment may lead to high overhead.

9

Existing cloud solutions are not effective for edge cloud



• Resource over-provisioning (Mengwei Xu et. al.[IMC ‘21]).
− Significant resource waste.

▪ Average CPU utilization is about 6x lower on edge servers than on cloud servers.

• Collocating best-effort apps with latency sensitive apps (PARTIES[ASPLOS ‘19]).
− Edge cloud is dominated by latency sensitive applications.

• Avoid collocating applications that interfere with each other (Bolt[ASPLOS ‘17]).
− Hard to predict which apps may interfere with each other due to app execution dynamics.

• Resource partitioning (Heracles[ISCA ‘15]) can barely help due to app dynamic 
resource usage.

− Infrequent adjustment of resource partitions may not help.

▪ Resources are not adapted to resource demand of the workload.

− Frequent adjustment may lead to high overhead.

10

Existing cloud solutions are not effective for edge cloud



Outline

• Problem: how to schedule latency sensitive apps to reduce their 
mutual interference and latencies in edge cloud.

✓DASEC: dynamic asymmetric scheduling for edge computing.
− Basic idea: move the interference off the tasks on the critical paths of the workloads.

− Key issues and solutions.

• Evaluation.
− DASEC has been implemented in Linux/KVM, Linux CFS, and Google user-level 

scheduler (i.e., ghost [SOSP ‘21]).

− Compared to vanilla Linux/KVM, DASEC reduces mean latency and 99th tail latency by 
46% and 52%, respectively.

11



Basic idea: move interference off the tasks on 
the critical paths of the workloads
• Critical path of a workload is the longest execution path from starting 

executing the workload to finishing the execution.
− Tasks on the workload’s critical path must be finished as quickly as possible to avoid 

delaying the progress of the workload.

• How to judge whether a task is on the critical path.
− All the other tasks of the workload depend on the task to make progress.

• Making interference affect mostly the tasks on non-critical paths and rarely 
the tasks on critical paths to reduce latency.

− Tasks on non-critical paths to yield resources to tasks on critical paths.

• This work focuses on the interference caused by sharing CPU cores.
− CPU resources, as the most important resource type, have the largest impact on perf.

• Tasks in workloads interfere with each other in three ways.
− Tasks on app’s critical path are delayed, interrupted, or lack CPU share.

12



Basic idea: move interference off the tasks on 
the critical paths of the workloads
• Critical path of a workload is the longest execution path from starting 

executing the workload to finishing the execution.
− Tasks on the workload’s critical path must be finished as quickly as possible to avoid 

delaying the progress of the workload.

• How to judge whether a task is on the critical path.
− All the other tasks of the workload depend on the task to make progress.

• Making interference affect mostly the tasks on non-critical paths and rarely 
the tasks on critical paths to reduce latency.

− Tasks on non-critical paths to yield resources to tasks on critical paths.

• This work focuses on the interference caused by sharing CPU cores.
− CPU resources, as the most important resource type, have the largest impact on perf.

• Tasks in workloads interfere with each other in three ways.
− Tasks on app’s critical path are delayed, interrupted, or lack CPU share.

13



Basic idea: move interference off the tasks on 
the critical paths of the workloads
• Critical path of a workload is the longest execution path from starting 

executing the workload to finishing the execution.
− Tasks on the workload’s critical path must be finished as quickly as possible to avoid 

delaying the progress of the workload.

• How to judge whether a task is on the critical path.
− All the other tasks of the workload depend on the task to make progress.

• Making interference affect mostly the tasks on non-critical paths and rarely 
the tasks on critical paths to reduce latency.

− Tasks on non-critical paths to yield resources to tasks on critical paths.

• This work focuses on the interference caused by sharing CPU cores.
− CPU resources, as the most important resource type, have the largest impact on perf.

• Tasks in workloads interfere with each other in three ways.
− Tasks on app’s critical path are delayed, interrupted, or lack CPU share.

14



Basic idea: move interference off the tasks on 
the critical paths of the workloads
• Critical path of a workload is the longest execution path from starting 

executing the workload to finishing the execution.
− Tasks on the workload’s critical path must be finished as quickly as possible to avoid 

delaying the progress of the workload.

• How to judge whether a task is on the critical path.
− All the other tasks of the workload depend on the task to make progress.

• Making interference affect mostly the tasks on non-critical paths and rarely 
the tasks on critical paths to reduce latency.

− Tasks on non-critical paths to yield resources to tasks on critical paths.

• This work focuses on the interference caused by sharing CPU cores.
− CPU resources, as the most important resource type, have the largest impact on perf.

• Tasks in workloads interfere with each other in three ways.
− Tasks on app’s critical path are delayed, interrupted, or lack CPU share.

15



Basic idea: move interference off the tasks on 
the critical paths of the workloads
• Critical path of a workload is the longest execution path from starting 

executing the workload to finishing the execution.
− Tasks on the workload’s critical path must be finished as quickly as possible to avoid 

delaying the progress of the workload.

• How to judge whether a task is on the critical path.
− All the other tasks of the workload depend on the task to make progress.

• Making interference affect mostly the tasks on non-critical paths and rarely 
the tasks on critical paths to reduce latency.

− Tasks on non-critical paths to yield resources to tasks on critical paths.

• This work focuses on the interference caused by sharing CPU cores.
− CPU resources, as the most important resource type, have the largest impact on perf.

• Tasks in workloads interfere with each other in three ways.
− Tasks on app’s critical path are delayed, interrupted, or lack CPU share.

16



Interference #1: tasks on app’s critical path 
are delayed and start late

• Detection: at the end of previous time period, a thread/process was in “ready” or 
“running” status and its timeslice was not used up.

• Solution: reduce rescheduling latency of the thread/process to let it start early.
17



Interference #1: tasks on app’s critical path 
are delayed and start late

• Detection: at the end of previous time period, a thread/process was in “ready” or 
“running” status and its timeslice was not used up.

• Solution: reduce rescheduling latency of the thread/process to let it start early.
18



Interference #1: tasks on app’s critical path 
are delayed and start late

• Detection: at the end of previous time period, a thread/process was in “ready” or 
“running” status and its timeslice was not used up.

• Solution: reduce rescheduling latency of the thread/process to let it start early.
19



Interference #1: tasks on app’s critical path 
are delayed and start late

• Detection: at the end of previous time period, a thread/process was in “ready” or 
“running” status and its timeslice was not used up.

• Solution: reduce rescheduling latency of the thread/process to let it start early.
20



Interference #1: tasks on app’s critical path 
are delayed and start late

• Detection: at the end of previous time period, a thread/process was in “ready” or 
“running” status and its timeslice was not used up.

• Solution: reduce rescheduling latency of the thread/process to let it start early.
21



Interference #1: tasks on app’s critical path 
are delayed and start late

22

App is ready to run at T0



Interference #1: tasks on app’s critical path 
are delayed and start late

• Detection: at the end of previous time period, a thread/process was in “ready” or 
“running” status and its timeslice was not used up.

• Solution: reduce rescheduling latency of the thread/process to let it start early.
23



Interference #1: tasks on app’s critical path 
are delayed and start late

• Detection: at the end of previous time period, a thread/process was in “ready” or 
“running” status and its timeslice was not used up.

• Solution: reduce rescheduling latency of the thread/process to let it start early.
24

Finished earlier!



Interference #2: tasks on app’s critical path 
are interrupted

25

Unfinished part is delayed!



Interference #2: tasks on app’s critical path 
are interrupted

• Detection: threads/processes with low rescheduling latencies are scheduled on the 
same core or their total timeslices exceed core’s capacity.

• Solution: adjust the layout of threads/processes on cores in a conservative way.
26

Unfinished part is delayed!



Interference #2: tasks on app’s critical path 
are interrupted

• Detection: threads/processes with low rescheduling latencies are scheduled on the 
same core or their total timeslices exceed core’s capacity.

• Solution: adjust the layout of threads/processes on cores in a conservative way.
27

Unfinished part is delayed!



Interference #3: tasks on app’s critical path 
lack CPU share

28



Interference #3: tasks on app’s critical path 
lack CPU share

• Detection: threads/processes were preempted due to depletion of timeslice in 
previous time period.

• Solution: keep total timeslice of the app fixed and allocate more time share to the 
threads/processes on app’s critical path. 29



Interference #3: tasks on app’s critical path 
lack CPU share

• Detection: threads/processes were preempted due to depletion of timeslice in 
previous time period.

• Solution: keep total timeslice of the app fixed and allocate more time share to the 
threads/processes on app’s critical path. 30



DASEC implementation

31

Periodically monitors 
tasks’ states and events, 
e.g., remaining timeslice.

(Implemented in Linux Proc FS)



DASEC implementation

32

Periodically monitors 
tasks’ states and events, 
e.g., remaining timeslice.

(Implemented in Linux Proc FS)

Assign timeslice to each 
task for the upcoming 
time period through 

changing tasks’ weights.
(Implemented in Linux CFS)



DASEC implementation

33

Periodically monitors 
tasks’ states and events, 
e.g., remaining timeslice.

(Implemented in Linux Proc FS)

Assign timeslice to each 
task for the upcoming 
time period through 

changing tasks’ weights.
(Implemented in Linux CFS)

Adjust wakeup latency to 
change each task’s 

rescheduling latency.
(Implemented in Linux CFS)



DASEC implementation

34

Periodically monitors 
tasks’ states and events, 
e.g., remaining timeslice.

(Implemented in Linux Proc FS)

Assign timeslice to each 
task for the upcoming 
time period through 

changing tasks’ weights.
(Implemented in Linux CFS)

Adjust wakeup latency to 
change each task’s 

rescheduling latency.
(Implemented in Linux CFS)

Resolve time slice 
conflicts and 

rescheduling latency 
conflicts on cores 

through changing tasks’ 
layout on cores.

(Implemented with Linux set 
affinity interfaces)



Outline

• Problem: how to schedule latency sensitive apps to reduce their 
mutual interference and latencies in edge cloud.

• DASEC: dynamic asymmetric scheduling for edge computing.
− Basic idea: move the interference off the tasks on the critical paths of the workloads.

− Key issues and solutions.

✓Evaluation.
− DASEC has been implemented in Linux/KVM, Linux CFS, and Google user-level 

scheduler (i.e., ghost [SOSP ‘21]).

− Compared to vanilla Linux/KVM, DASEC reduces mean latency and 99th tail latency 
by 46% and 52%, respectively.

35



Experimental setup

• HPE ProLiant DL580 Gen10 server with 80 cores, 256GB DRAM, and 
two 2TB SSDs.

• Both VMs and VMM (Linux QEMU/KVM) use Ubuntu Linux 18.04 with 
the same Linux 5.3 kernel and software configuration.

• Each VM has 16 vCPUs and 16GB memory.

• Compared with vanilla Linux/KVM, PARTIES ([ASPLOS ‘19]), and BVT 
([SOSP ‘99] and [EuroSys ‘14]).

• Test under two settings.
− Multiple VM instances of the same workload.

− Multiple VM instances of different workloads.

36



Evaluation applications and workloads
Application Workload description

Image-classify Image classification on ImageNet

Action-recognize Video action recognition

Img-dnn Handwriting recognition based on OpenCV

Masstree In memory Key/Value store with 50% GET and 50% SET

Silo In-memory transactional database with TPCC

Memcached Serve requests (random keys, 50% SET, 50% GET)

37



Evaluation objectives

• What is DASEC’s performance?

• How much performance improvement can be achieved with DASEC, 
compared with PARTIES?

• How effective is each technique in DASEC?

• What is DASEC’s applicability and overhead?

38



*Latencies relative 
to Linux/KVM when 
consolidation ratio is 
0.4. 

39

Mean latency (DASEC vs Linux/KVM)

Masstree Imgdnn

Memcached Silo



*Latencies relative 
to Linux/KVM when 
consolidation ratio is 
0.4. 

40
• As consolidation ratio increases, Linux/KVM’s mean latency increases much 

more compared to DASEC. 

Mean latency (DASEC vs Linux/KVM)

Masstree Imgdnn

Memcached Silo



*Latencies relative 
to Linux/KVM when 
consolidation ratio is 
0.4. 

41
• Compared to Linux/KVM, DASEC reduces mean latencies by 46% on average. 

Mean latency (DASEC vs Linux/KVM)

1.8x 1.6x

1.5x 1.4x
Masstree Imgdnn

Memcached Silo



99th tail latency (DASEC vs Linux/KVM)

*99th tail Latencies 
relative to Linux/KVM 
when consolidation 
ratio is 0.4. 

• Compared to Linux/KVM, DASEC reduces 99th tail latencies by 52% on average. 
42

2.1x 2x

1.9x 1.6x

Masstree Imgdnn

Memcached Silo



Performance (DASEC vs PARTIES)

• Compared to PARTIES, DASEC offers up to 51% lower mean latencies, 35% 
lower 99th tail latency, and 95% more service rate. 43

2x 1.5x

1.9x
*All containers run 
the same Masstree
workload. 



Conclusions

• How to efficiently schedule latency sensitive applications with low 
latency by reducing their mutual interference in edge cloud.

− Edge cloud is resource constrained and dominated by latency sensitive workloads.
− Such applications are resource demanding and have dynamic resource usage.
− Existing cloud approaches are not effective to reduce latency in edge cloud.

DASEC is an efficient solution for reducing workload mutual interference 
and latency in edge cloud.

− Move the interference off the tasks on the critical paths of the workload.
− Detections and solutions for workload mutual interference in three ways.

• Evaluation shows DASEC can substantially reduce latency compared to 
related systems in edge cloud.

44



Conclusions

• How to efficiently schedule latency sensitive applications with low 
latency by reducing their mutual interference in edge cloud.

− Edge cloud is resource constrained and dominated by latency sensitive workloads.
− Such applications are resource demanding and have dynamic resource usage.
− Existing cloud approaches are not effective to reduce latency in edge cloud.

• DASEC is an efficient solution for reducing workload mutual interference 
and latency in edge cloud.

− Move the interference off the tasks on the critical paths of the workload.
− Detections and solutions for workload mutual interference in three ways.

• Evaluation shows DASEC can substantially reduce latency compared to 
related systems in edge cloud.

45



Conclusions

• How to efficiently schedule latency sensitive applications with low 
latency by reducing their mutual interference in edge cloud.

− Edge cloud is resource constrained and dominated by latency sensitive workloads.
− Such applications are resource demanding and have dynamic resource usage.
− Existing cloud approaches are not effective to reduce latency in edge cloud.

• DASEC is an efficient solution for reducing workload mutual interference 
and latency in edge cloud.

− Move the interference off the tasks on the critical paths of the workload.
− Detections and solutions for workload mutual interference in three ways.

• Evaluation shows DASEC can substantially reduce latency compared to 
related systems in edge cloud.

46



References
[1] Xu, Mengwei, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng Qian, Shangguang Wang, Ke Li, Jingyu Yang, and Xuanzhe
Liu. "From cloud to edge: a first look at public edge platforms." In Proceedings of the 21st ACM Internet Measurement
Conference, pp. 37-53. 2021.

[2] Chen, Shuang, Christina Delimitrou, and José F. Martínez. "Parties: Qos-aware resource partitioning for multiple
interactive services." In Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 107-120. 2019.

[3] Duda, Kenneth J., and David R. Cheriton. "Borrowed-virtual-time (BVT) scheduling: supporting latency-sensitive
threads in a general-purpose scheduler." In Proceedings of the seventeenth ACM symposium on Operating systems
principles, pp. 261-276. 1999.

[4] Leverich, Jacob, and Christos Kozyrakis. "Reconciling high server utilization and sub-millisecond quality-of-service."
In Proceedings of the Ninth European Conference on Computer Systems, pp. 1-14. 2014.

[5] Humphries, Jack Tigar, Neel Natu, Ashwin Chaugule, Ofir Weisse, Barret Rhoden, Josh Don, Luigi Rizzo, Oleg
Rombakh, Paul Turner, and Christos Kozyrakis. "ghost: Fast & flexible user-space delegation of linux scheduling."
In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, pp. 588-604. 2021.

[6] Delimitrou, Christina, and Christos Kozyrakis. "Bolt: I know what you did last summer... in the cloud." ACM
SIGARCH Computer Architecture News 45, no. 1 (2017): 599-613.

47



Thank you!

Questions?

48

weiwei.jia@uri.edu
https://www.ele.uri.edu/faculty/weiwei/

mailto:weiwei.jia@uri.edu

