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Background: edge cloud and its applications

• Edge cloud is a tiny cloud deployed

close to end users.
− Constrained computer resources.
− Low latency.
− E.g., AWS local zones.

• Edge cloud is dominated by latency sensitive apps that require low latency 
and high resource demanding.

− E.g., microseconds for autonomous vehicles/robots and AR/VR.

− Edge applications usually generate large amount of data for computation.
▪ Resource-constrained end devices cannot afford the computation.

High latency
Low latency
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Resource sharing increases edge app mutual 
interference and latency
• Multiple applications from different users share the same edge server.

− Execution of an app contends resources and interferes with execution of other apps.
▪ Interference may cause significant performance penalties if not well controlled.

• Resource contention and apps mutual interference are unavoidable in edge 
cloud!

− Limited number of edge servers host large number of apps.
▪ Hard to effectively distribute and separate interfering apps across different servers.

− Resource usage patterns of edge applications may change dynamically.
▪ Hard to predict which apps may interfere with each other.

• Problem: how to efficiently schedule latency sensitive apps to reduce their 
mutual interference and latencies in edge cloud.

− This problem is under-studied in edge cloud scenarios.
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Existing cloud solutions are not effective for edge cloud

• Resource over-provisioning (Mengwei Xu et. al.[IMC ‘21]).
− Significant resource waste.

▪ Average CPU utilization is about 6x lower on edge servers than on cloud servers.

• Collocating best-effort apps with latency sensitive apps (PARTIES[ASPLOS ‘19]).
− Edge cloud is dominated by latency sensitive applications.

• Avoid collocating applications that interfere with each other (Bolt[ASPLOS ‘17]).
− Hard to predict which apps may interfere with each other due to app execution dynamics.

• Resource partitioning (Heracles[ISCA ‘15]) can barely help due to app dynamic 
resource usage.

− Infrequent adjustment of resource partitions may not help.

▪ Resources are not adapted to resource demand of the workload.

− Frequent adjustment may lead to high overhead.
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Outline

• Problem: how to schedule latency sensitive apps to reduce their 
mutual interference and latencies in edge cloud.

✓DASEC: dynamic asymmetric scheduling for edge computing.
− Basic idea: move the interference off the tasks on the critical paths of the workloads.

− Key issues and solutions.

• Evaluation.
− DASEC has been implemented in Linux/KVM, Linux CFS, and Google user-level 

scheduler (i.e., ghost [SOSP ‘21]).

− Compared to vanilla Linux/KVM, DASEC reduces mean latency and 99th tail latency by 
46% and 52%, respectively.
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Basic idea: move interference off the tasks on 
the critical paths of the workloads
• Critical path of a workload is the longest execution path from starting 

executing the workload to finishing the execution.
− Tasks on the workload’s critical path must be finished as quickly as possible to avoid 

delaying the progress of the workload.

• How to judge whether a task is on the critical path.
− All the other tasks of the workload depend on the task to make progress.

• Making interference affect mostly the tasks on non-critical paths and rarely 
the tasks on critical paths to reduce latency.

− Tasks on non-critical paths to yield resources to tasks on critical paths.

• This work focuses on the interference caused by sharing CPU cores.
− CPU resources, as the most important resource type, have the largest impact on perf.

• Tasks in workloads interfere with each other in three ways.
− Tasks on app’s critical path are delayed, interrupted, or lack CPU share.
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Interference #1: tasks on app’s critical path 
are delayed and start late

• Detection: at the end of previous time period, a thread/process was in “ready” or 
“running” status and its timeslice was not used up.

• Solution: reduce rescheduling latency of the thread/process to let it start early.
17
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Interference #1: tasks on app’s critical path 
are delayed and start late

22

App is ready to run at T0
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Interference #2: tasks on app’s critical path 
are interrupted
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Unfinished part is delayed!



Interference #2: tasks on app’s critical path 
are interrupted

• Detection: threads/processes with low rescheduling latencies are scheduled on the 
same core or their total timeslices exceed core’s capacity.

• Solution: adjust the layout of threads/processes on cores in a conservative way.
26
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Interference #3: tasks on app’s critical path 
lack CPU share
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Interference #3: tasks on app’s critical path 
lack CPU share

• Detection: threads/processes were preempted due to depletion of timeslice in 
previous time period.

• Solution: keep total timeslice of the app fixed and allocate more time share to the 
threads/processes on app’s critical path. 29
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DASEC implementation
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(Implemented in Linux CFS)

Adjust wakeup latency to 
change each task’s 

rescheduling latency.
(Implemented in Linux CFS)

Resolve time slice 
conflicts and 
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layout on cores.
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Outline
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Experimental setup

• HPE ProLiant DL580 Gen10 server with 80 cores, 256GB DRAM, and 
two 2TB SSDs.

• Both VMs and VMM (Linux QEMU/KVM) use Ubuntu Linux 18.04 with 
the same Linux 5.3 kernel and software configuration.

• Each VM has 16 vCPUs and 16GB memory.

• Compared with vanilla Linux/KVM, PARTIES ([ASPLOS ‘19]), and BVT 
([SOSP ‘99] and [EuroSys ‘14]).

• Test under two settings.
− Multiple VM instances of the same workload.

− Multiple VM instances of different workloads.
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Evaluation applications and workloads
Application Workload description

Image-classify Image classification on ImageNet

Action-recognize Video action recognition

Img-dnn Handwriting recognition based on OpenCV

Masstree In memory Key/Value store with 50% GET and 50% SET

Silo In-memory transactional database with TPCC

Memcached Serve requests (random keys, 50% SET, 50% GET)
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Evaluation objectives

• What is DASEC’s performance?

• How much performance improvement can be achieved with DASEC, 
compared with PARTIES?

• How effective is each technique in DASEC?

• What is DASEC’s applicability and overhead?
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*Latencies relative 
to Linux/KVM when 
consolidation ratio is 
0.4. 
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more compared to DASEC. 
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*Latencies relative 
to Linux/KVM when 
consolidation ratio is 
0.4. 
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• Compared to Linux/KVM, DASEC reduces mean latencies by 46% on average. 

Mean latency (DASEC vs Linux/KVM)

1.8x 1.6x

1.5x 1.4x
Masstree Imgdnn

Memcached Silo



99th tail latency (DASEC vs Linux/KVM)

*99th tail Latencies 
relative to Linux/KVM 
when consolidation 
ratio is 0.4. 

• Compared to Linux/KVM, DASEC reduces 99th tail latencies by 52% on average. 
42

2.1x 2x

1.9x 1.6x
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Memcached Silo



Performance (DASEC vs PARTIES)

• Compared to PARTIES, DASEC offers up to 51% lower mean latencies, 35% 
lower 99th tail latency, and 95% more service rate. 43

2x 1.5x

1.9x
*All containers run 
the same Masstree
workload. 



Conclusions

• How to efficiently schedule latency sensitive applications with low 
latency by reducing their mutual interference in edge cloud.

− Edge cloud is resource constrained and dominated by latency sensitive workloads.
− Such applications are resource demanding and have dynamic resource usage.
− Existing cloud approaches are not effective to reduce latency in edge cloud.

DASEC is an efficient solution for reducing workload mutual interference 
and latency in edge cloud.

− Move the interference off the tasks on the critical paths of the workload.
− Detections and solutions for workload mutual interference in three ways.

• Evaluation shows DASEC can substantially reduce latency compared to 
related systems in edge cloud.
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Thank you!

Questions?
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