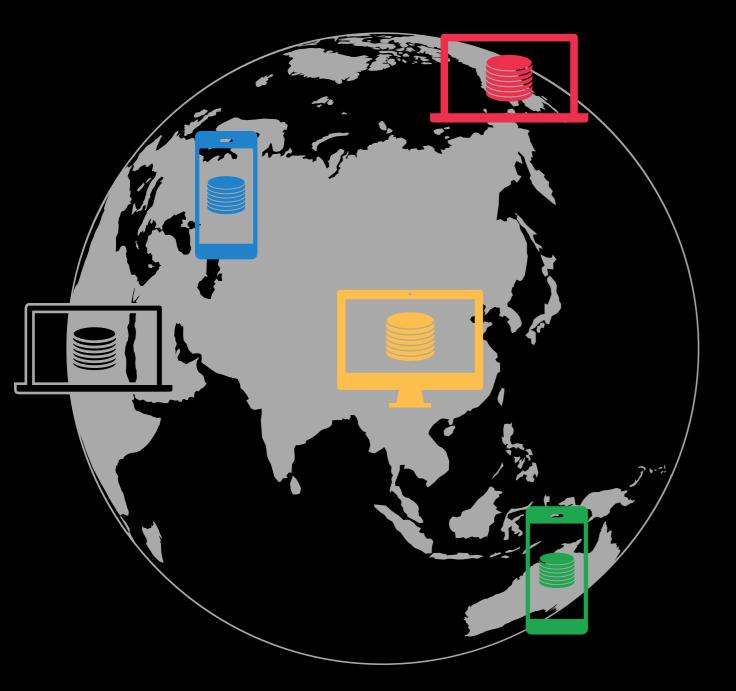
Pisces: Efficient Federated Learning via Guided Asynchronous Training

Zhifeng Jiang, Wei Wang, Baochun Li, Bo Li

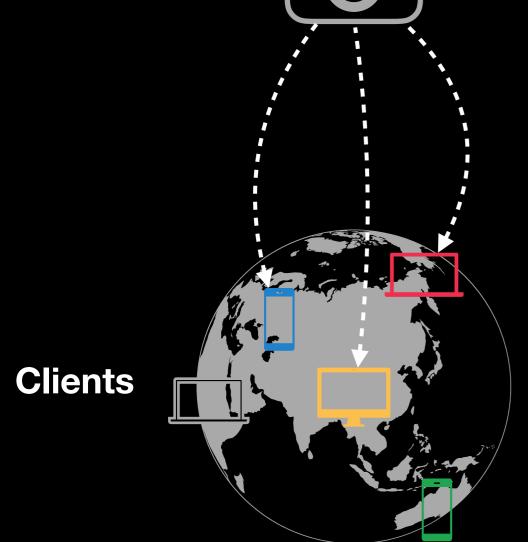
Federated Learning (FL)



Enable distributed clients to train a global model without revealing their data.

Federated Learning (FL)

()

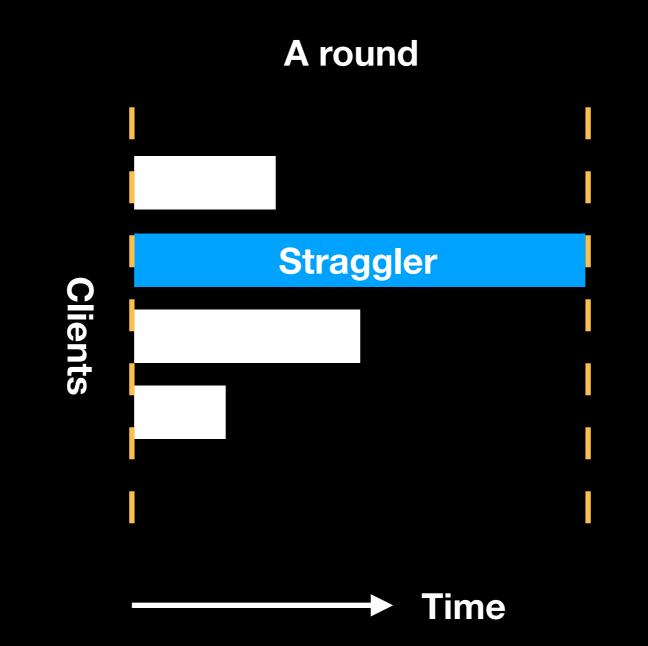


For each round

- **1.** Participant selection
- 2. Local training
- 3. Model aggregation

Synchronous

The Straggler Problem in Sync FL



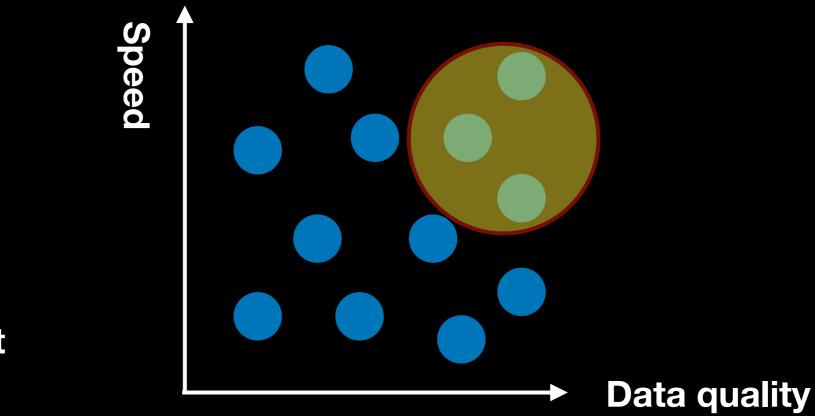
The Straggler Problem in Sync FL

Idle waiting: 33.2% to 57.2%

Existing work: Reconcile the demands for

Speed & Data quality

Client utility in Oort^[1] = Speed × Data quality

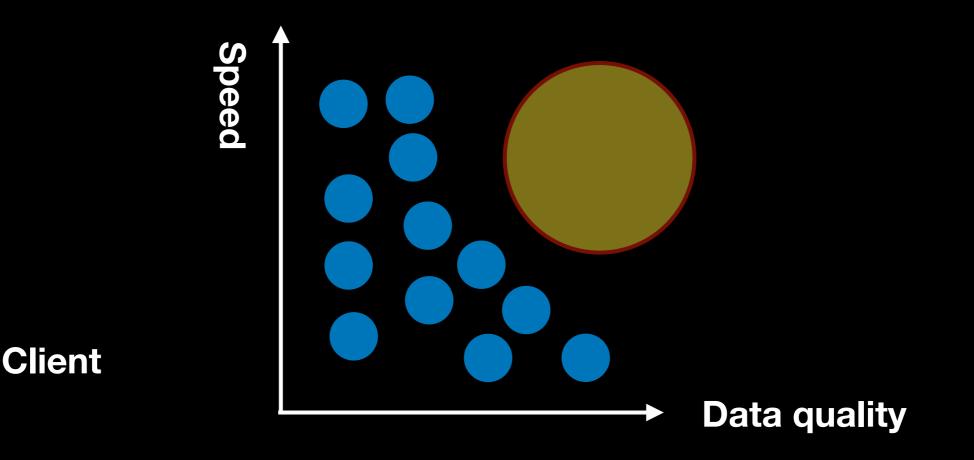


Client

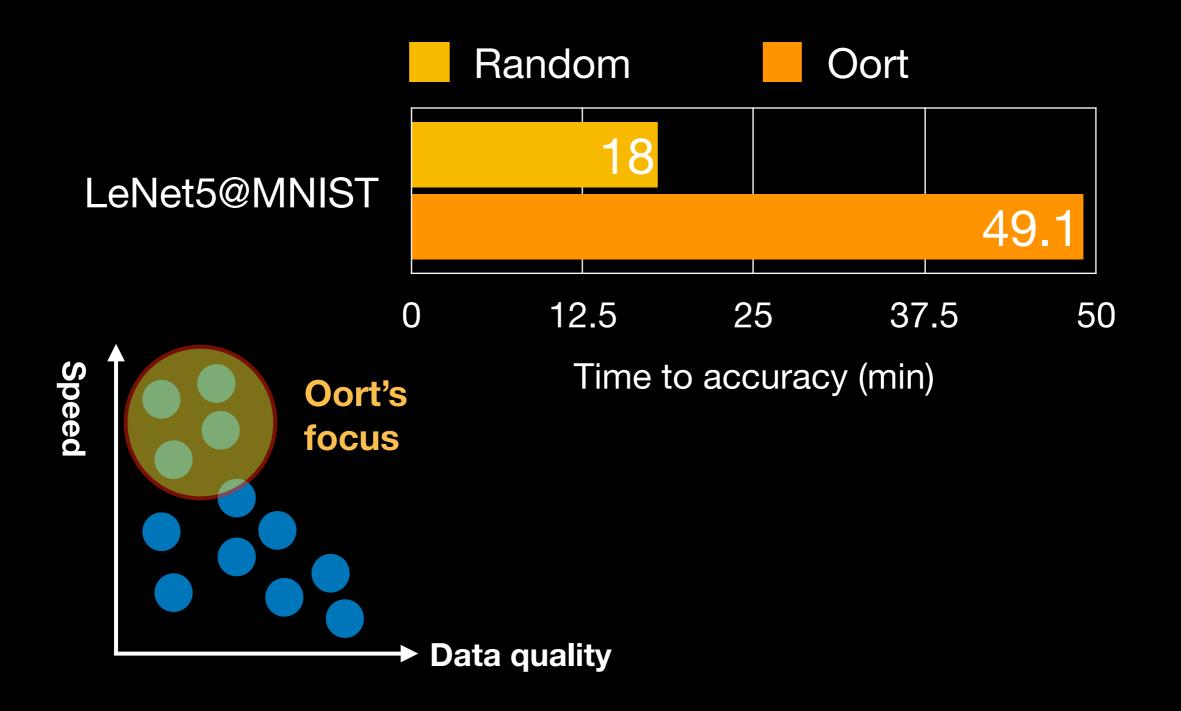
[1] Efficient federated learning via guided participant selection, OSDI'21

Inefficiency in a pathological case

Speed and data quality are inversely correlated



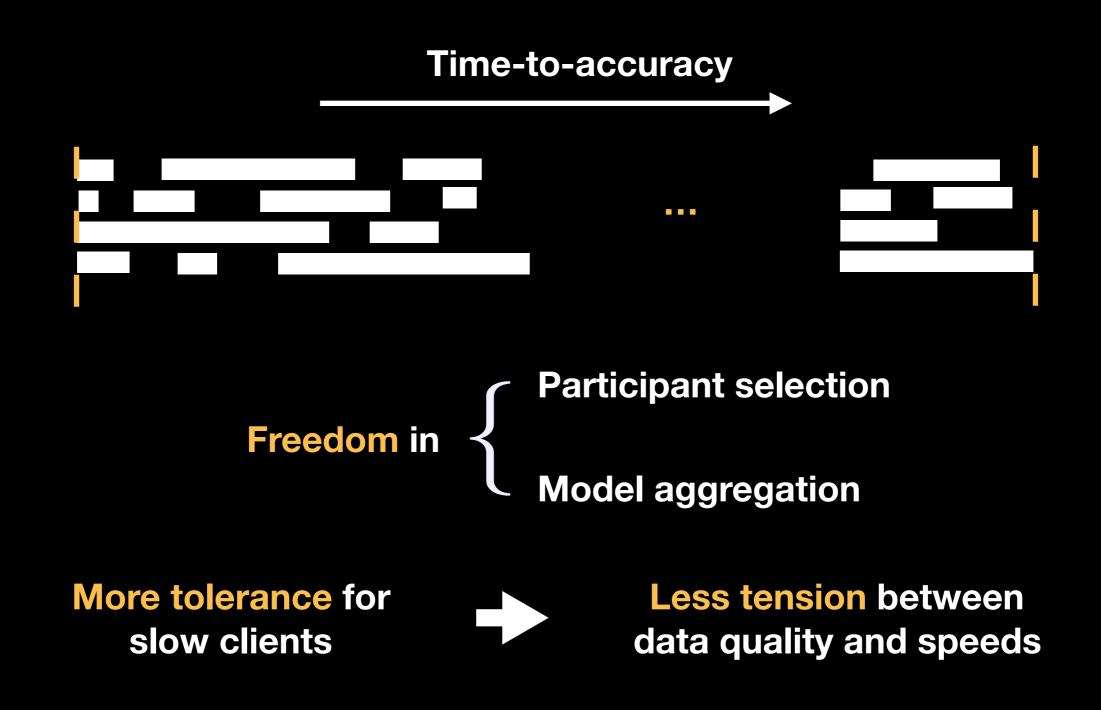
Inefficiency in a pathological case

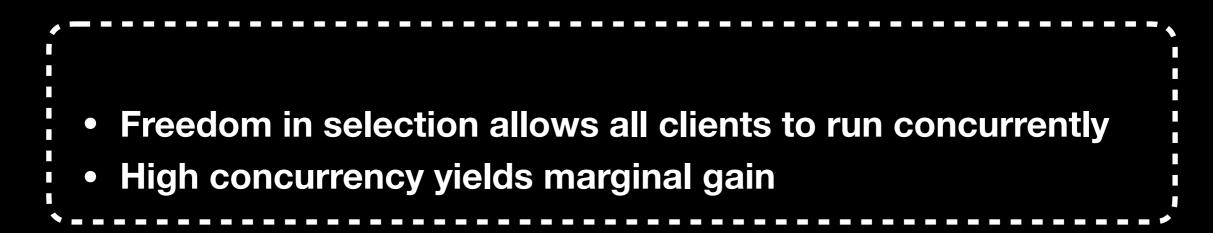


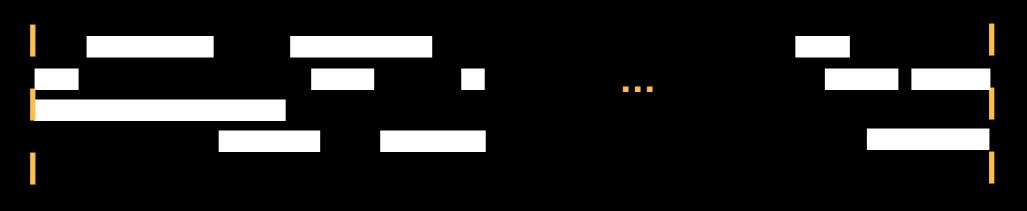
Inefficiency in a pathological case

Intrinsically hard to navigate in synchronous FL

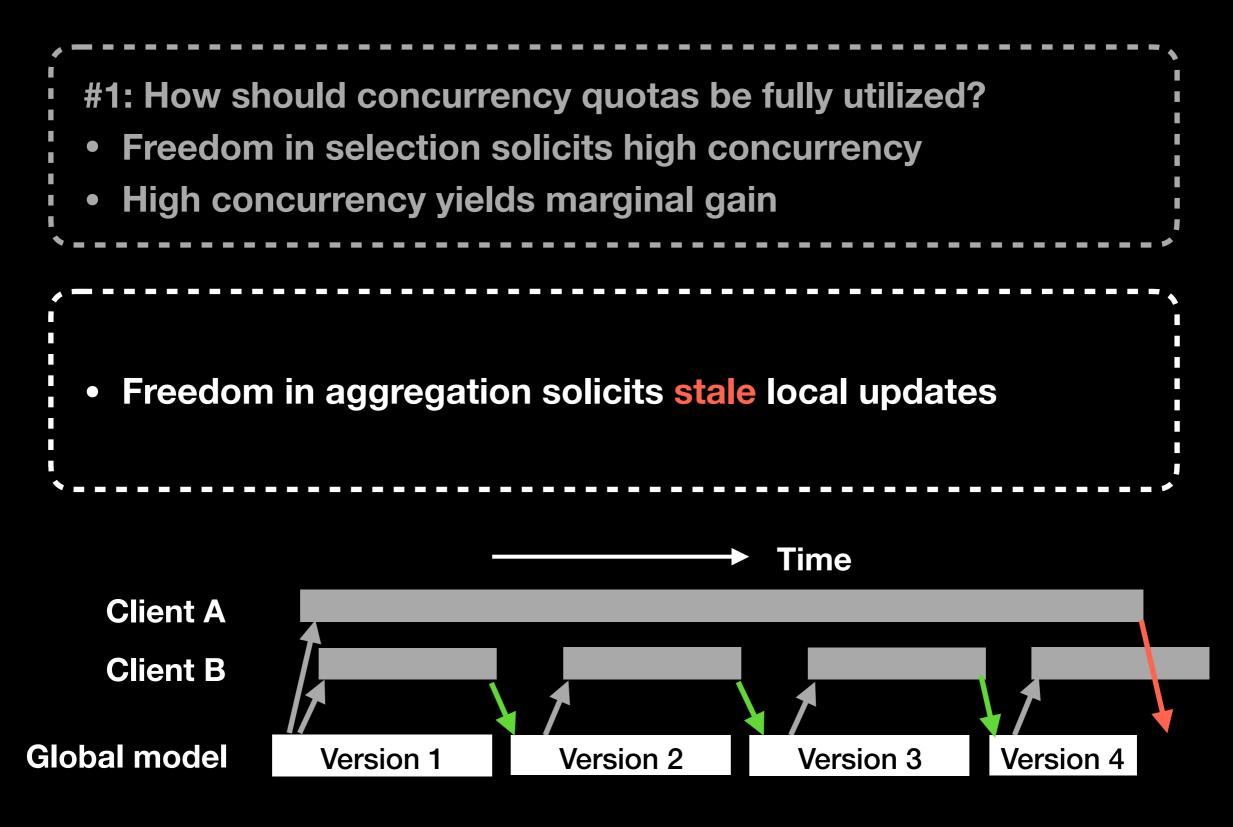
Call for Async FL







Resource Efficiency 🗸



Prefer clients with high

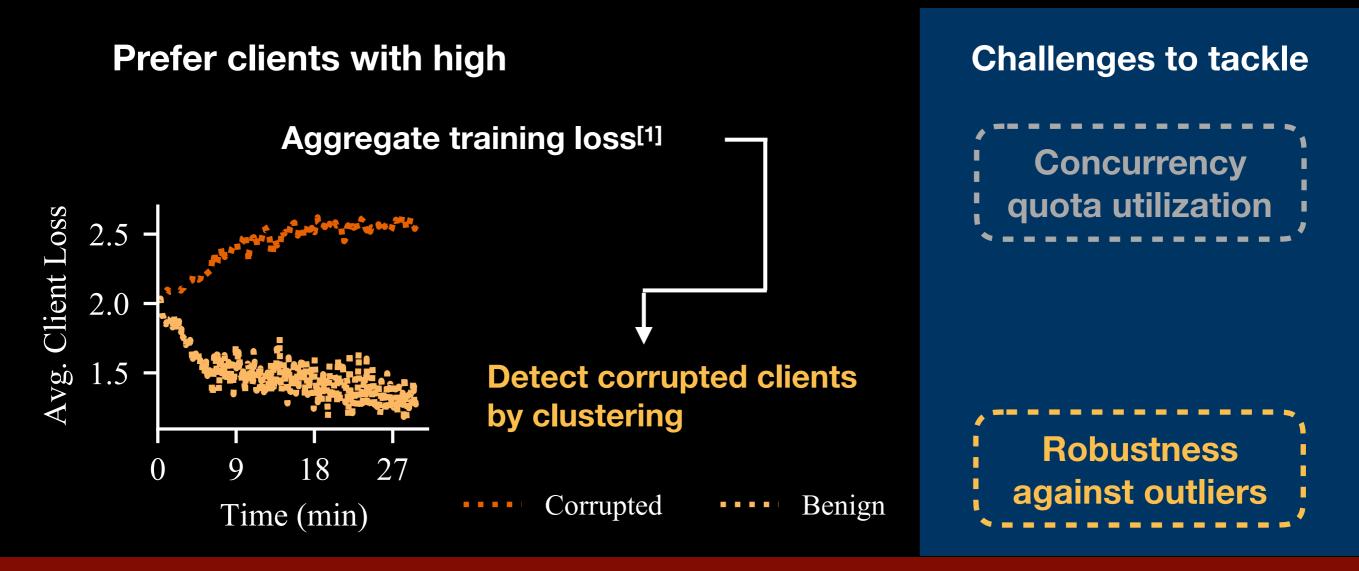
Aggregate training loss^[1]

Vulnerable to corrupted clients in async FL

Challenges to tackle

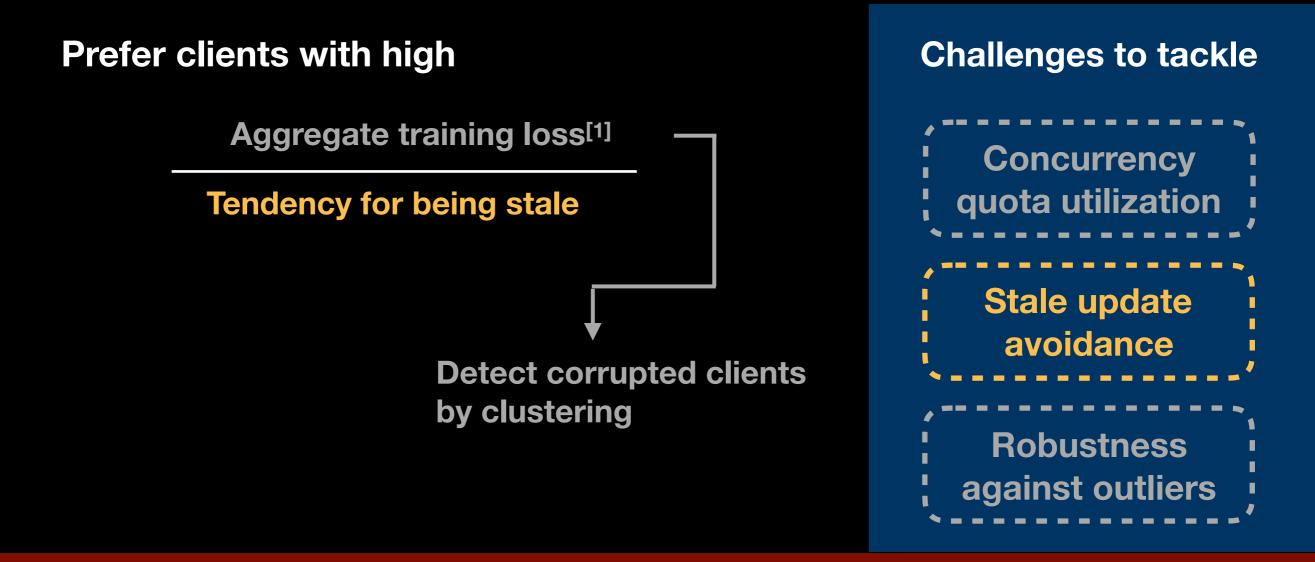
#1: Useful clients tends to have large gradients/losses

Intuitions

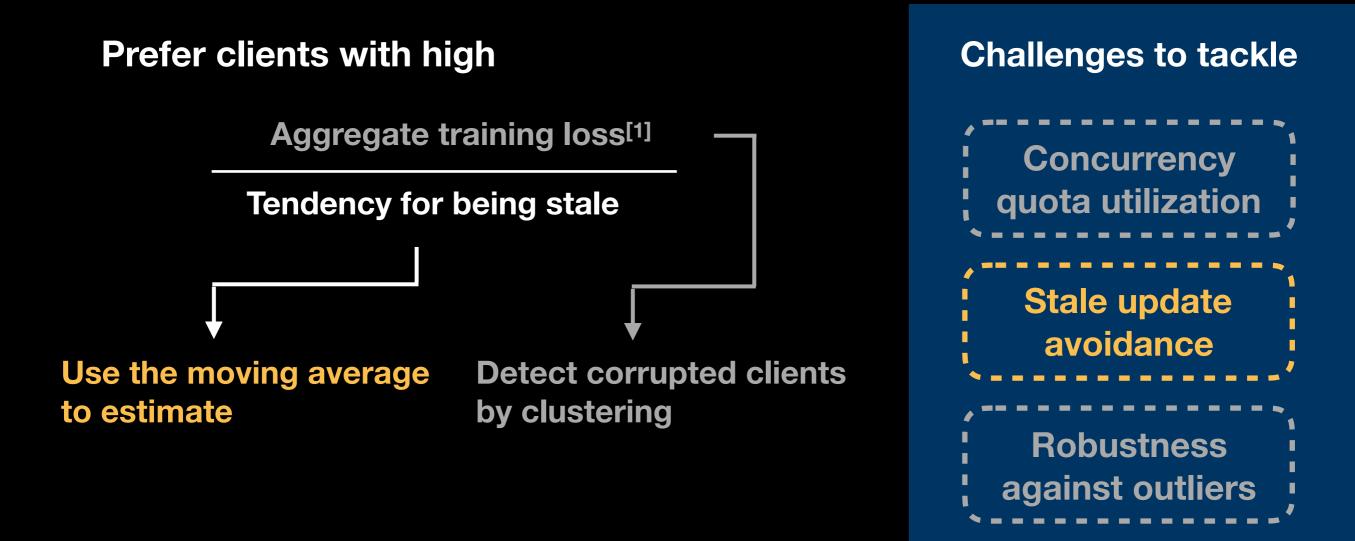


#1: Useful clients tends to have large gradients/losses#2: Clients with corrupted data have outlier losses

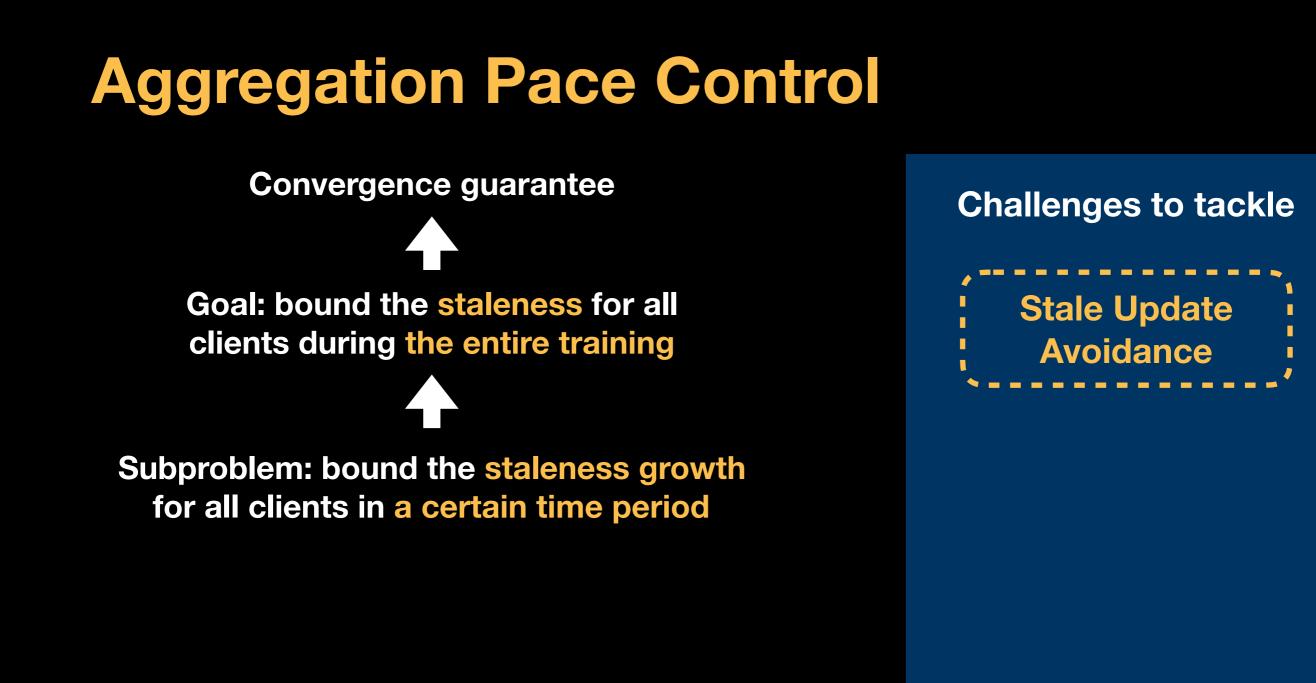
Intuitions



#1: Useful clients tends to have large gradients/losses
#2: Clients with corrupted data have outlier losses
#3: Reduce stale computation in the first place

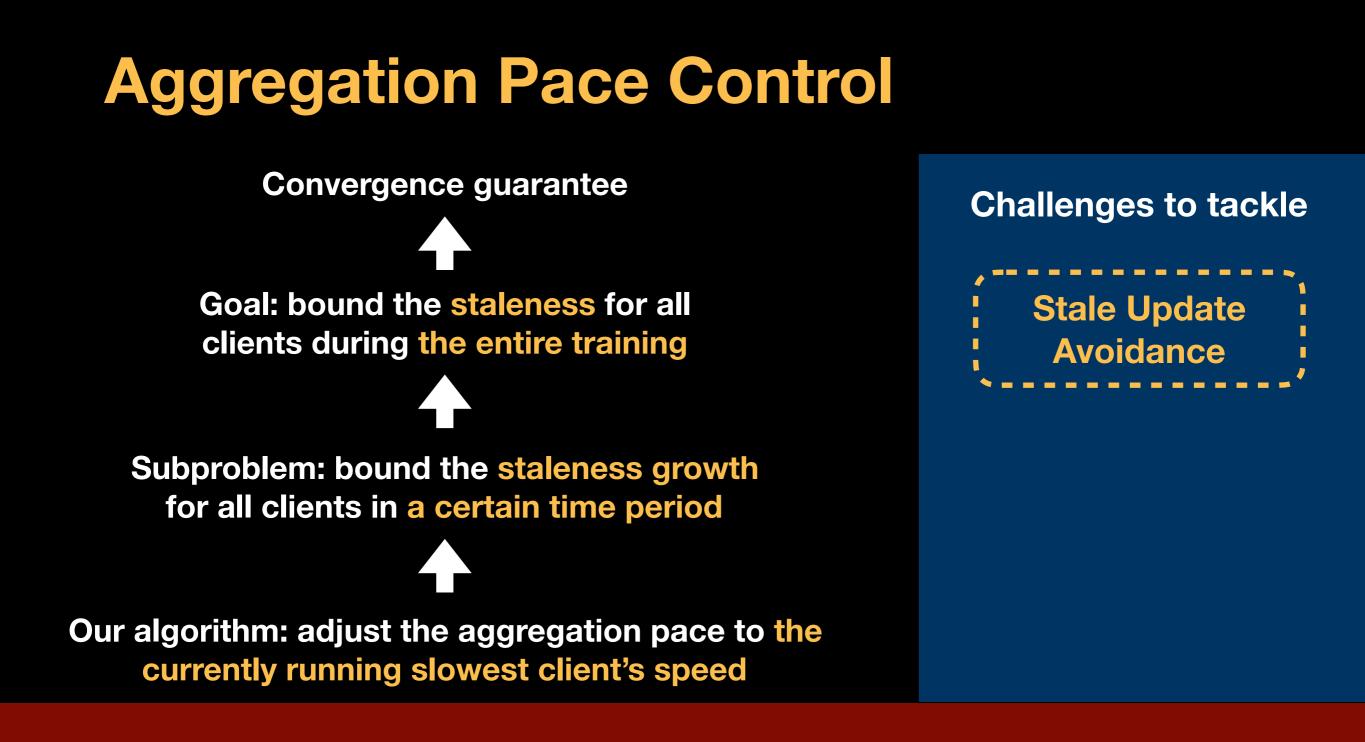


Intuitions	#1: Useful clients tends to have large gradients/losses
	#2: Clients with corrupted data have outlier losses
	#3: Reduce stale computation in the first place
	#4: Clients' staleness evolves steadily over time



#1: Bounded staleness guarantees progress in each aggregation Intuitions

#1: Bounded staleness guarantees progress in each aggregation Intuitions #2: Bounding the staleness growth for a client in a time period guarantees the same for other faster clients



#1: Bounded staleness guarantees progress in each aggregation Intuitions #2: Bounding the staleness growth for a client in a time period guarantees the same for other faster clients

Aggregation Pace Control

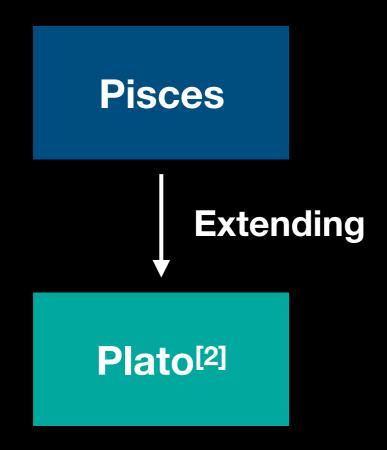
Convergence guarantee

Goal: bound the staleness for all clients during the entire training

Subproblem: bound the staleness growth for all clients in a certain time period

Our algorithm: adjust the aggregation pace to the currently running slowest client's speed **Challenges to tackle**

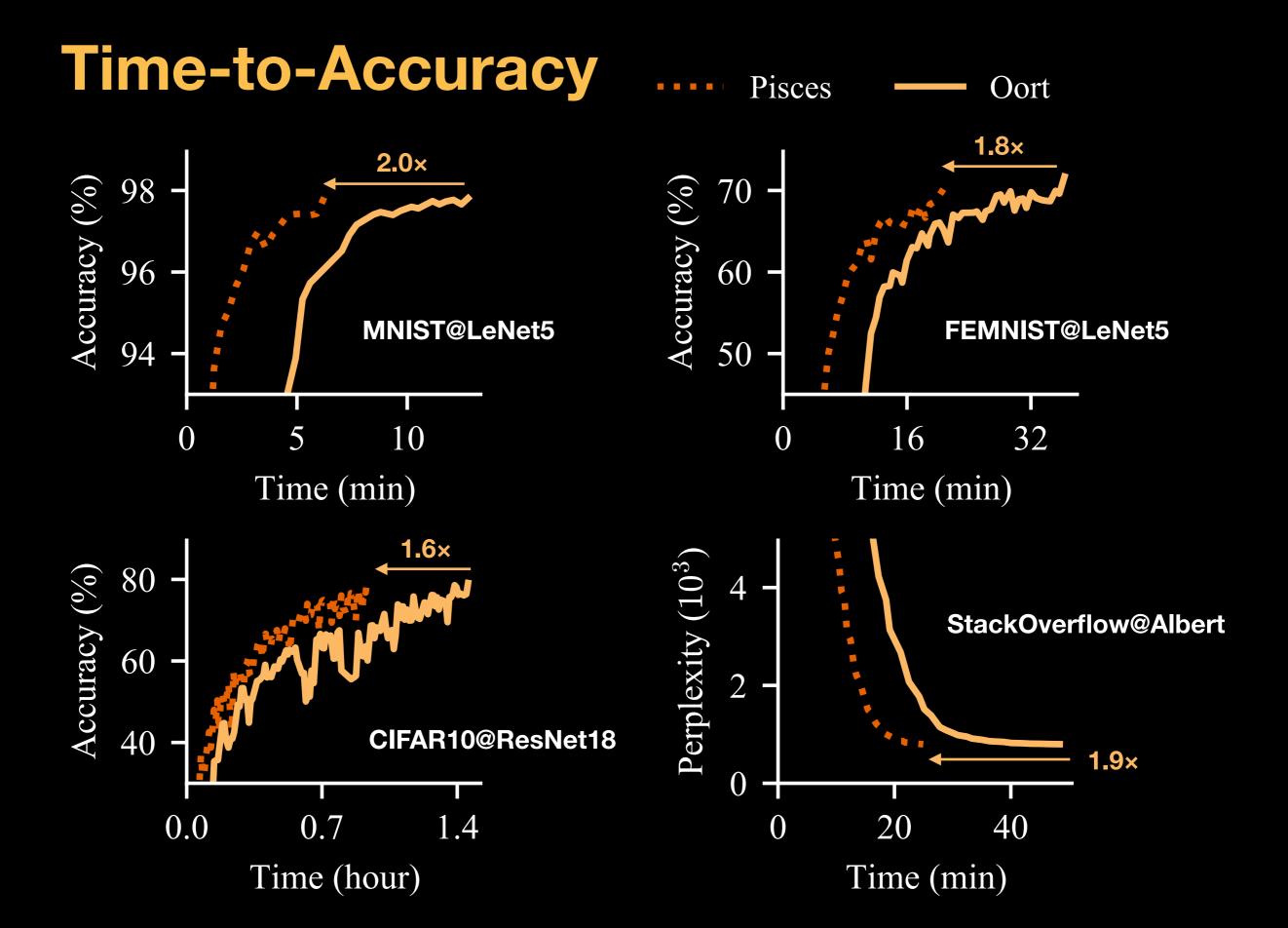
Evaluation

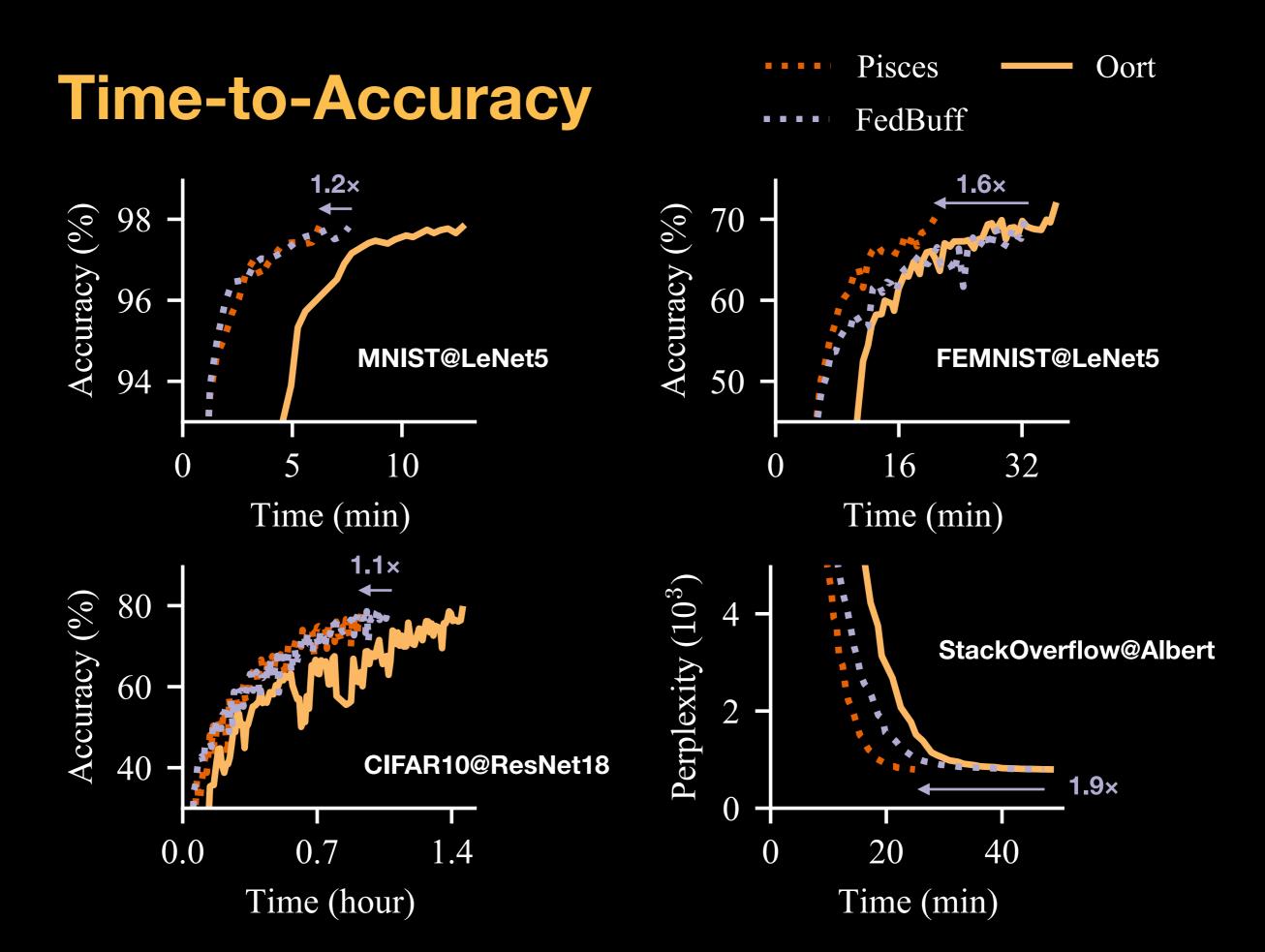


Setup

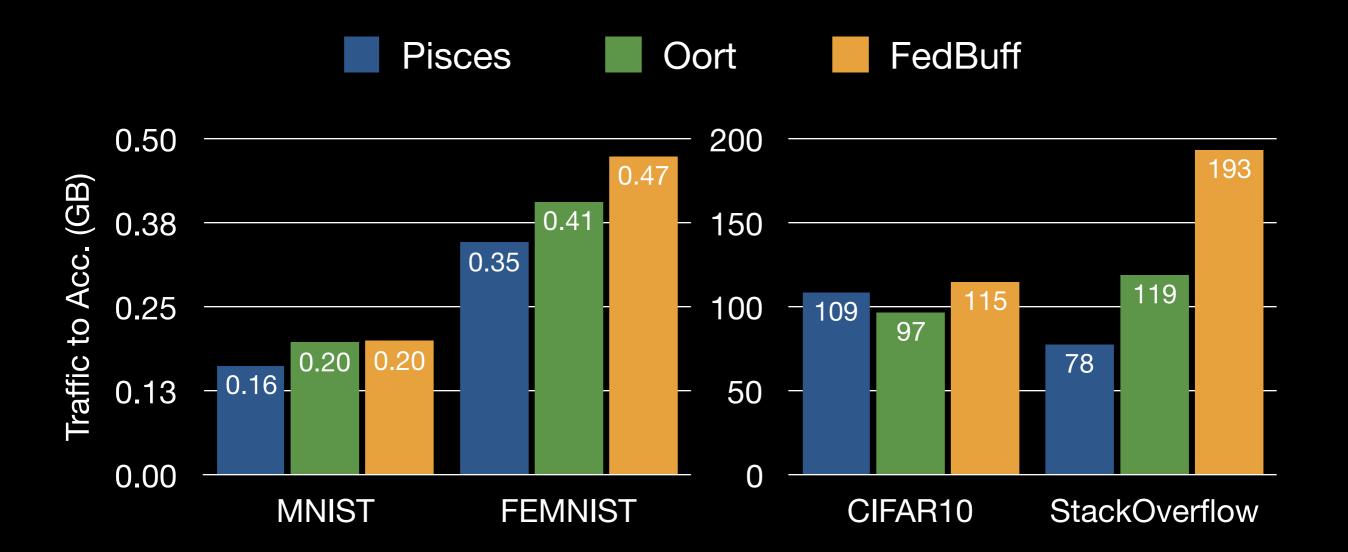
- Testbed w/ 200 clients
 - Concurrency limit is 10%
- Heterogeneity
 - System: Zipf's distribution
 - Data: Realistic or synthetic
- Baselines
 - Oort: SOTA Sync FL
 - FedBuff^[3]: SOTA Async FL

[2] Plato GitHub repo: <u>https://github.com/TL-System/plato</u>
 [3] Federated learning with buffered asynchronous aggregation, AISTATS'22





Traffic-to-Accuracy



https://github.com/SamuelGong/Pisces

An async FL framework for

- Efficiency
- Robustness
- Flexibility

