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Network Resource Management

Network resource management: How to efficiently share network 
bandwidth amongst the users/apps?
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TCP: A classic example

● Fair-Share policy: 
○ Contenders equally share link BW 

● End-host based distributed mechanism
○ Additive increase, multiplicative decrease

● Tightly couple policy and mechanism
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Network Resource Management Inside a Cloud

Varying performance objectives
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Need for rich set of policies beyond fairshare
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Network Resource Management Inside a Cloud

Varying performance objectives
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Need for rich set of policies beyond fairshare

A large body of work
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Limitations of Existing Approaches
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● Distributed approach 
○ Limited Control: State is distributed across nodes 
○ Complex: Requires coordination between nodes 
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Limitations of Existing Approaches
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● Distributed approach 
○ Limited Control: State is distributed across nodes 
○ Complex: Requires coordination between nodes 

● Point Solutions
○ Limits support for future use-cases
○ Scalability Challenge: Infrastructure evolves
○ Coexistence Challenge: Point solutions are hard 

to co-exist

“Tying congestion control deeply to switch 
internals poses a larger maintenance burden 
(e.g., finding appropriate thresholds)”

Google LLC SIGCOMM ‘20
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A case for a Centralized Approach: Inspired by SDN

● Control over network state
○ Opportunity: Greater control over the network resources
○ Challenge: Make it scalable
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● Decoupling of policy and mechanism
○ Opportunity: A set of key parameters can enable many policies
○ Challenge: Provide efficient enforcement mechanism 



A case for a Centralized Approach: Inspired by SDN

● Control over network state
○ Opportunity: Greater control over the network resources
○ Challenge: Make it scalable
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● Decoupling of policy and mechanism
○ Opportunity: A set of key parameters can enable many policies
○ Challenge: Provide efficient enforcement mechanism 

● Abstractions: Support for a variety of use-cases
○ Opportunity: Build new abstractions on top of centralized state
○ Challenge: Identify suitable abstractions



A Database Abstraction For 
Network Resource Management
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Resource Allocation Database (RAD): An Overview

● Resource management
○ Centralization: Database tables store the state
○ Control: Manage bandwidth sharing decisions
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Resource Allocation Database (RAD): An Overview
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● Decoupling policy from mechanism
○ An efficient mechanism reflects database state 

onto the switches
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Resource Allocation Database (RAD): An Overview
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● Abstractions:
○ Builds on top of RAD tables
○ Represents different use cases

● Decoupling policy from mechanism
○ An efficient mechanism reflects database state 

onto the switches

CoFlow BigSwitch
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Abstractions● Resource management
○ Centralization: Database tables store the state
○ Control: Manage bandwidth sharing decisions



Use Case - Bandwidth Reservation
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● Fundamental to provide guaranteed service 
(e.g., Baraat, PDQ, D3)
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Step-1: Temporary Reservation 
   Step-2: Commit or Abort

● Classic Approach:
○ Establish consensus: Multi-step process
○ Atomicity: Only reserve if all nodes can commit
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● Fundamental to provide guaranteed service 
(e.g., Baraat, PDQ, D3)
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○ Establish consensus: Multi-step process
○ Atomicity: Only reserve if all nodes can commit

● Using RAD: Database transactions
○ Opportunity! Built in support for atomic operations
○ Challenge! How to minimize the overhead of 

distributed transactions?
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Use Case - Virtual View of the Network

● Common requirement inside a cloud 
(e.g., BigSwitch, Virtual Cluster)
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● Virtual private cluster (e.g., multi-tenant setting)
○ Independent control over allocated resources
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Use Case - Virtual View of the Network

● Using database views
○ Opportunity! Natural fit for data independence
○ Challenge! Can views be made updateable? Tenant-A

Tenant-B

R
A

D Link_Id Rate Flows

Links
Flow_Id Src Dst Rate

Flows
Link_Id Flow_Id Rate

Reservations

VPC

Node Flow Rate

Abstract 
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(e.g., BigSwitch, Virtual Cluster)
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Challenges in Realizing RAD in Large Data Centers

● Scalability: Millions of requests per second?

● Performance: Minimize delays in accessing RAD?
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Scalability and Performance Concerns

● Data Center network properties used by RAD
○ Topologies: Structured like a tree
○ Traffic locality: Majority of the traffic is rack-local
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Scalability and Performance Concerns

● Data Center network properties used by RAD
○ Topologies: Structured like a tree
○ Traffic locality: Majority of the traffic is rack-local
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Logically Centralized 
Resource Management Plane

● Opportunity! Network Aware Sharding
○ Shard network links across RAD instances
○ Each switch has a co-located RAD instance
○ Rack-local queries only contact local RAD replica

Agg

TOR TOR

Agg

Core

1 J NK



Scalability and Performance Concerns

● Data Center network properties used by RAD
○ Topologies: Structured like a tree
○ Traffic locality: Majority of the traffic is rack-local
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Logically Centralized 
Resource Management Plane

● Opportunity! Network aware replication
○ A switch only replicates to its children 

(e.g., Core->Agg, Agg->TOR)
○ Choice over consistency guarantees 

across replicas
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Preliminary Evaluation: Overheads of RAD

● Objective: Evaluate the feasibility of using RAD
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● Setup:
○ Topology: 10 clients, 1 server, 1 RAD node
○ Database: Off-the-shelf Mysql
○ Workload: Websearch
○ Policy: Fairshare (TCP)
○ Metric: Flow completion time (FCT)
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Preliminary Evaluation: Overheads of RAD

● Objective: Evaluate the feasibility of using RAD
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● Setup:
○ Topology: 10 clients, 1 server, 1 RAD node
○ Database: Off-the-shelf Mysql
○ Workload: Websearch
○ Policy: Fairshare (TCP)
○ Metric: Flow completion time (FCT)

● Schemes:
○ TCP: Baseline (Does not use database)
○ RAD: Single centralized DB
○ RAD-Sharded: Each client has a local copy of 
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Preliminary Evaluation:
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Preliminary Evaluation: Feasibility of RAD
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Preliminary Evaluation: Feasibility of RAD
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Upto 60% flows experience significant additional latency
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Question! Can we do better?

Sharding helps in reducing RAD overhead 



Summary

● Network resource management inside a cloud is a complex task

● A database approach inspired by SDN is promising

○ Simplifies the network resource management task

○ Interesting challenges to take care

● Opens avenues for exciting research
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Questions?
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Extra Slides
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Implementation

● Database support
○ Mysql off-the-shelf
○ Caching: Many flow requests are identical from DB perspective

● End host rate control:
○ Modified TCP stack: Added bound support on TCP window

● Traffic Generation: trafficGenerator from HKUST-SING Lab
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Technical Challenges and Opportunities

● Distributed Transaction
○ Typically a high latency operation
○ Recent advances (e.g., RDMA) can help 

● Replication Overhead
○ A suitable consistency models can help lower the overheads
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End-to-End example

● Rate reservation
○ Given: A flow size, deadline
○ Action: Allocate a suitable rate to meet the deadline

Setup: N1 wants to send data of size F in time D to N2 

Agg

TOR TOR

Agg

Core

N1 N2 NzNK

Dataplane 
Support

RM: Enforces the rate (R) into the data plane on flows 
path

Step-3
Enforce (R)

Client: Node-1 initiates a new flow request and sends 
flow size (F) and deadline info (D) to local RM replica

Step-1
(F, D)

RM: Calculates required rate (R = F/D) and update the 
state or rejects the request

Step-2
R = F/D
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Other Use Cases

● Accuracy VS Overhead Tradeoff
○ Different use cases may require different level of accuracy
○ RAD: Various consistency models

● Resource Management Sandboxing
○ A scheme may require sandboxing to tune/optimize various parameters
○ RAD: Checkpointing can help replay events
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PathLinks
Path_Id Link_Id Seq Link_Id Rate Flow_Count

LinkState

PathMap
Path_Id Src Dst

Flows
Flow_Id Src Dst Rate Status

BigSwitch

Node Flow_Count Rate

CREATE VIEW BigSwitch
AS SELECT DISTINCT Src AS Node, Flow_Count, Rate
FROM PathMap
JOIN PathLinks ON PathMap.Path_ID=PathLinks.Path_ID
JOIN LinkState ON PathLinks.Link_ID=LinkState.Link_ID
WHERE PathLinks.Seq=0;

Fairsharing over BigSwitch Abstraction 



Abstractions: Ravel vs RAD
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Policy: FIFO
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