Tufts

UNIVERSITY

Network Resource Management as a

Database Problem
(Vision Paper)

Hafiz Mohsin Bashir
Abdullah Bin Faisal, Fahad R. Dogar

Network Resource Management

Network resource management: How to efficiently share network
bandwidth amongst the users/apps?

‘ B/2
. User-1
TCP: A classic example
e Fair-Share policy: @ B2
o Contenders equally share link BW [)
User-2

e End-host based distributed mechanism
o Additive increase, multiplicative decrease
e Tightly couple policy and mechanism

__-(I’

Network Resource Management Inside a Cloud

Varying performance objectives

U

Need for rich set of policies beyond fairshare

Network Resource Management Inside a Cloud

Varying performance objectives

) & G
Need for rich set of policies beyond fairshare User-1 B |
@ 38/
ab
User-2

Example
Providing Bandwidth Guarantee

Varying performance objectives

U

Need for rich set of policies beyond fairshare

U

4)

D3
kSIGCOMM ‘11)

PDQ
kSIGCOMM ‘12)

(AY4

PASE
kSIGCOMM ‘14)

BARAAT
kSIGCOMI\/I ‘14)

PIAS

NSDI ‘15

2D

J CoNEXT ‘18)

DAS

. CoNEXT ‘19)

AY4)

Varys

kSIGCOMM ‘14)

A large body of work

Network Resource Management Inside a Cloud

B/4

User-1 B

__-(I’

@ 3B/
User-2
Example
Providing Bandwidth Guarantee

Limitations of Existing Approaches

Network
State

e Distributed approach
o Limited Control: State is distributed across nodes
o Complex: Requires coordination between nodes

Limitations of Existing Approaches

Network
State

—————————

e Distributed approach
o Limited Control: State is distributed across nodes
o Complex: Requires coordination between nodes

e Point Solutions
o Limits support for future use-cases

o Scalability Challenge: Infrastructure evolves - . . :
Tying congestion control deeply to switch

o Coexistence Challenge: Point solutions are hard internals poses a larger maintenance burden

to co-exist (e.g., finding appropriate thresholds)”
Google LLC SIGCOMM ‘20

A case for a Centralized Approach: Inspired by SDN

e Control over network state
o Opportunity: Greater control over the network resources
o Challenge: Make it scalable

A case for a Centralized Approach: Inspired by SDN

e Control over network state
o Opportunity: Greater control over the network resources
o Challenge: Make it scalable

e Decoupling of policy and mechanism
o Opportunity: A set of key parameters can enable many policies
o Challenge: Provide efficient enforcement mechanism

A case for a Centralized Approach: Inspired by SDN

e Control over network state
o Opportunity: Greater control over the network resources
o Challenge: Make it scalable

e Decoupling of policy and mechanism
o Opportunity: A set of key parameters can enable many policies
o Challenge: Provide efficient enforcement mechanism

e Abstractions: Support for a variety of use-cases
o Opportunity: Build new abstractions on top of centralized state
o Challenge: Identify suitable abstractions

10

A Database Abstraction For
Network Resource Management

11

Resource Allocation Database (RAD): An Overview

e Resource management

o Centralization: Database tables store the state
o Control: Manage bandwidth sharing decisions

2 Links Flows
o’ [Link_1d | Flow_ld| Rate |
Reservations

|Link_td|Rate| Flows | [Flow_td| src| Dst | RateJ

12

Resource Allocation Database (RAD): An Overview

e Resource management

o Centralization: Database tables store the state
o Control: Manage bandwidth sharing decisions

|Link_td|Rate| Flows | [Flow_ld| src| Dst| Rate |
2 Links Flows J
. . . o’ [Link_1d | Flow_ld| Rate |
e Decoupling policy from mechanism PP,
o An efficient mechanism reflects database state
Enforcement
onto the switches Mechanismﬂ

Dataplane

Resource Allocation Database (RAD): An Overview

e Resource management

©)

©)

e Decoupling policy from mechanism
An efficient mechanism reflects database state

©)

Centralization: Database tables store the state
Control: Manage bandwidth sharing decisions

onto the switches

e Abstractions:

©)

©)

Builds on top of RAD tables

Represents different use cases

Abstractions

[CoFlow BigSwitch

U

|Link_td|Rate| Flows | [Flow_ld| src| Dst| Rate |

2 Links Flows
o’ [Link_1d | Flow_ld| Rate |
Reservations)

Enforcement
Mechanism

Q

c

o

Q.

(1]

)

(3]

()

e\
@
@
@

Use Case - Bandwidth Reservation

e Fundamental to provide guaranteed service
(e.g., Baraat, PDQ, D3)

e Classic Approach:
o Establish consensus: Multi-step process
o Atomicity: Only reserve if all nodes can commit

Swi‘tch Switch
|| Step-1: Temporary Reservation
] Step-2: Commit or Abort

Dataplane

15

Use Case - Bandwidth Reservation

e Fundamental to provide guaranteed service
(e.g., Baraat, PDQ, D3)

e Classic Approach: _Swlch

o Establish consensus: Multi-step process
o Atomicity: Only reserve if all nodes can commit

Swi‘tch SwiEch
|| Step-1: Temporary Reservation
] Step-2: Commit or Abort

Dataplane

16

Use Case - Bandwidth Reservation

e Fundamental to provide guaranteed service
(e.g., Baraat, PDQ, D3)

e Classic Approach:
o Establish consensus: Multi-step process
o Atomicity: Only reserve if all nodes can commit

Dataplane

m Swifch
|| Step-1: Temporary Reservation
] Step-2: Commit or Abort

17

Use Case - Bandwidth Reservation

e Fundamental to provide guaranteed service
(e.g., Baraat, PDQ, D3)

e Classic Approach:
o Establish consensus: Multi-step process
o Atomicity: Only reserve if all nodes can commit

e Using RAD: Database transactions

RAD

Dataplane

o Opportunity! Built in support for atomic operations

o Challenge! How to minimize the overhead of
distributed transactions?

m_ink_ld| Rate| Flows | [Flow_ld| Src| Dst| Rate |
—~Links Flows

[Link_1d | Flow_ld | Rate |
_ Reservations

J
4 —Swith] I
Switch Switch

| ® ®

-~

18

Use Case - Virtual View of the Network

e Common requirement inside a cloud
(e.g., BigSwitch, Virtual Cluster)

Use Case - Virtual View of the Network

e Common requirement inside a cloud
(e.g., BigSwitch, Virtual Cluster)

e Virtual private cluster (e.g., multi-tenant setting)
o Independent control over allocated resources

Dataplane

e\
®
ei

[] Tenant-A
[] Tenant-B

Use Case - Virtual View of the Network

e Common requirement inside a cloud

(e.g., BigSwitch, Virtual Cluster) [P°"°VX J{ P°"°VY J
e Virtual private cluster (e.g., multi-tenant setting) Te"a“tA Te"a"t B
o Independent control over allocated resources %
a
©
©
o

[] Tenant-A
[] Tenant-B

Use Case - Virtual View of the Network

e Common requirement inside a cloud
(e.g., BigSwitch, Virtual Cluster)

e Virtual private cluster (e.g., multi-tenant setting)
o Independent control over allocated resources

e Using database views

o Opportunity! Natural fit for data independence
o Challenge! Can views be made updateable?

RAD

Dataplane

Abstract | VPC |

View Node Flow Rate

m_ink_ld| Rate| Flows | [Flow_ld| Src| Dst| Rate |

Links Flows
[Link_1d | Flow_ld | Rate |

_ Reservations)
4 N\
__Switch [Switch |
[] Tenant-A

[] Tenant-B

Challenges in Realizing RAD in Large Data Centers

e Scalability: Millions of requests per second?

e Performance: Minimize delays in accessing RAD?

’/I 1 \\\
/ 1 N
/.7 Switch '
7/ N A Y
,/ ,I \ \\
, AN
,’Switch Switch'\
// A
Vi N

Dataplane

23

Scalability and Performance Concerns

e Data Center network properties used by RAD
o Topologies: Structured like a tree
o Traffic locality: Majority of the traffic is rack-local

Dataplane

24

Scalability and Performance Concerns

e Data Center network properties used by RAD
o Topologies: Structured like a tree

o Traffic locality: Majority of the traffic is rack-local == 5o centaized ™

1
1 Resource Management Plane

47\\
4
Pk d 3
-,

e Opportunity! Network Aware Sharding
o Shard network links across RAD instances
o Each switch has a co-located RAD instance 6 b 6 ?N)
o Rack-local queries only contact local RAD replica

25

Scalability and Performance Concerns

e Data Center network properties used by RAD

o Topologies: Structured like a tree . Logically Centralized
. . . . + Resource Management Plane_!
o Traffic locality: Majority of the traffic is rack-local /\B AN

e Opportunity! Network aware replication
o A switch only replicates to its children
(e.g., Core->Agg, Agg->TOR)

o Choice over consistency guarantees
across replicas

26

Preliminary Evaluation: Overheads of RAD

e Objective: Evaluate the feasibility of using RAD

27

Preliminary Evaluation: Overheads of RAD

e Objective: Evaluate the feasibility of using RAD Centralized

e Setup:

Topology: 10 clients, 1 server, 1 RAD node
Database: Off-the-shelf Mysq|

Workload: Websearch

Policy: Fairshare (TCP)

Metric: Flow completion time (FCT)

O O O O O

Preliminary Evaluation: Overheads of RAD

e Objective: Evaluate the feasibility of using RAD Centralized
RS RAD

e Setup: %

o Topology: 10 clients, 1 server, 1 RAD node .

o Database: Off-the-shelf Mysq|

o Workload: Websearch

o Policy: Fairshare (TCP)

o Metric: Flow completion time (FCT) 8 \

| \ S

e Schemes: Sharded

o TCP: Baseline (Does not use database) RAD B8 @

o RAD: Single centralized DB Local

o RAD-Sharded: Each client has a local copy of replica

RAD

29

Preliminary Evaluation:

1.0
0.8 -
L 0.6 1
()]
U 0.4
0.2 1

0.0 1

()
()

)

=== TCP-Baseline

~ 100

101
FCT(mSs)

- 102

30

Preliminary Evaluation: Feasibility of RAD

1.0
0.8 -
L 0.6 1
()]
U 0.4
0.2 1

0.0 1

=== TCP-Baseline
=== RAD-Centralized

100

101
FCT(ms)

- 102

- RAD
W Centralized

Preliminary Evaluation: Feasibility of RAD

1.0 1

0.8 -
L 0.6 1
()]
U 0.4
0.2 1
0.0 1

=== T(CP-Baseline
=== RAD-Centralized

100 10
FCT(ms)

Upto 60% flows experience significant additional latency

102

- RAD
W Centralized

Preliminary Evaluation: Overheads of RAD

1.0
0.8 1
L. 0.6
QO
O 0.4
0.2 1
0.0 1

-Baseline
-Centralized
-Sharded

Sharded g @

Local
Replica

33

Preliminary Evaluation: Overheads of RAD

1.0 1 EASE—A

0.8 1
. 0.5
O
O 0.4- Baeeling Sharded g @

0.2 - -Centralized R';‘l’;j‘c'a

-Sharded
0.0 1
102

Sharding helps in reducing RAD overhead

34

Preliminary Evaluation: Overheads of RAD

1.09 oo E—A

0.8 1
L 06
O
O 0.41 —e=— TCP-Baseline Sharded 5 @

0.2 - —A— RAD-Centralized R';"’;f‘c'a

=== RAD-Sharded
0.0 1

1102

Sharding helps in reducing RAD overhead

35

Summary

e Network resource management inside a cloud is a complex task
e A database approach inspired by SDN is promising

o Simplifies the network resource management task

o Interesting challenges to take care

e Opens avenues for exciting research

36

Questions?

Extra Slides

38

Implementation

e Database support
o Mysql off-the-shelf
o Caching: Many flow requests are identical from DB perspective

e End host rate control:
o Modified TCP stack: Added bound support on TCP window

e Traffic Generation: trafficGenerator from HKUST-SING Lab

39

Technical Challenges and Opportunities

e Distributed Transaction
o Typically a high latency operation
o Recent advances (e.g., RDMA) can help

e Replication Overhead
o A suitable consistency models can help lower the overheads

40

End-to-End example

e Rate reservation
o Given: A flow size, deadline
o Action: Allocate a suitable rate to meet the deadline

Setup: N, wants to send data of size Fintime Dto N,

Client: Node-1 initiates a new flow request and sends
flow size (F) and deadline info (D) to local RM replica

RM: Calculates required rate (R = F/D) and update the
state or rejects the request

RM: Enforces the rate (R) into the data plane on flows
path

:_Dataplane:
._Support !

41

Other Use Cases

e Accuracy VS Overhead Tradeoff
o Different use cases may require different level of accuracy
o RAD: Various consistency models

e Resource Management Sandboxing
o A scheme may require sandboxing to tune/optimize various parameters
o RAD: Checkpointing can help replay events

Node Flow Count Rate

Fairsharing over BigSwitch Abstraction

SELECT flow_count INTO _count FROM bigSwitch
WHERE node=new.dst;

IF (_count = @) THEN SET _rate=maxRate

ELSE SET _rate=maxRate/_count+1

CREATE VIEW BigSwitch

AS SELECT DISTINCT Src AS Node, Flow Count, Rate

FROM PathMap

JOIN PathLinks ON PathMap.Path ID=PathLinks.Path ID
JOIN LinkState ON PathLinks.Link ID=LinkState.Link ID
WHERE PathLinks.Seg=0;

43

Abstractions: Ravel vs RAD

Node_ID Flow_Count Rate Flow_ID Src Dst Rate

g . B oo R

Path_ID Link D Link Seq LinkID Flow_Count Rate

e | Fowsate

\Path_lD Src Dst Flow_ID CoFlow_ID Src Dst Rate Status

CREATE VIEW BigSwitch

AS SELECT DISTINCT Src AS Node ID, Flow Count
FROM PathMap

JOIN Paths ON Pathmap.Path ID=Paths.Path ID
JOIN Links ON Paths.Link _ ID=Links. Link _ 1D

WHERE Paths.Link Seqg=0;

44

Policy: FIFO

CREATE TRIGGER Policy_ FIFO

BEFORE INSERT ON event
FOR EACH ROW
BEGIN
DECLARE _flow_count INT(11);
DECLARE _rate INT(11);
SELECT max(flow_count) INTO _flow_count FROM BigSwitch WHERE node=new.src OR node=new.dst;
IF (_flow_count > 0) THEN
SET _rate = 0
ELSE
SET _rate = 1000
END IF;
INSERT INTO flows(flow_id, src, dst, rate) VALUES(new.flow_id, new.src, new.dst, _rate);
UPDATE BigSwitch SET flow_count=flow_count+l WHERE Node=new.src OR Node=new.dst;

BEFORE DELETE ON event
FOR EACH ROW
BEGIN
DECLARE _min_id INT(11);
DECLARE _flow_id INT(11);
DELETE FROM flows WHERE flow_id=new.flow_id;
UPDATE BigSwitch SET flow_count=flow_count-1 WHERE Node=new.src OR Node=new.dst;
SELECT MIN(seq), flow_id INTO _flow_id FROM flows;
UPDATE flows SET rate=1000 WHERE flow_id= flow_id;
END&&

45

