
Network Resource Management as a
Database Problem

(Vision Paper)

Hafiz Mohsin Bashir
Abdullah Bin Faisal, Fahad R. Dogar

Network Resource Management

Network resource management: How to efficiently share network
bandwidth amongst the users/apps?

2

TCP: A classic example

● Fair-Share policy:
○ Contenders equally share link BW

● End-host based distributed mechanism
○ Additive increase, multiplicative decrease

● Tightly couple policy and mechanism

B/2

B/2

BUser-1

User-2

Network Resource Management Inside a Cloud

Varying performance objectives

3

Need for rich set of policies beyond fairshare

Network Resource Management Inside a Cloud

Varying performance objectives

4

Need for rich set of policies beyond fairshare

Example
Providing Bandwidth Guarantee

3B/4

B/4

BUser-1

User-2

Network Resource Management Inside a Cloud

Varying performance objectives

5

Need for rich set of policies beyond fairshare

A large body of work

D3
SIGCOMM ‘11

PDQ
SIGCOMM ‘12

PASE
SIGCOMM ‘14

BARAAT
SIGCOMM ‘14

PIAS
NSDI ‘15

2D
CoNEXT ‘18

DAS
CoNEXT ‘19

Varys
SIGCOMM ‘14

Example
Providing Bandwidth Guarantee

3B/4

B/4

BUser-1

User-2

Limitations of Existing Approaches

6

● Distributed approach
○ Limited Control: State is distributed across nodes
○ Complex: Requires coordination between nodes

F2, R2

F1, R1

F1, R1
F2, R2User-1

User-2

Network
State

Limitations of Existing Approaches

7

● Distributed approach
○ Limited Control: State is distributed across nodes
○ Complex: Requires coordination between nodes

● Point Solutions
○ Limits support for future use-cases
○ Scalability Challenge: Infrastructure evolves
○ Coexistence Challenge: Point solutions are hard

to co-exist

“Tying congestion control deeply to switch
internals poses a larger maintenance burden
(e.g., finding appropriate thresholds)”

Google LLC SIGCOMM ‘20

F2, R2

F1, R1

F1, R1
F2, R2User-1

User-2

Network
State

A case for a Centralized Approach: Inspired by SDN

● Control over network state
○ Opportunity: Greater control over the network resources
○ Challenge: Make it scalable

8

A case for a Centralized Approach: Inspired by SDN

● Control over network state
○ Opportunity: Greater control over the network resources
○ Challenge: Make it scalable

9

● Decoupling of policy and mechanism
○ Opportunity: A set of key parameters can enable many policies
○ Challenge: Provide efficient enforcement mechanism

A case for a Centralized Approach: Inspired by SDN

● Control over network state
○ Opportunity: Greater control over the network resources
○ Challenge: Make it scalable

10

● Decoupling of policy and mechanism
○ Opportunity: A set of key parameters can enable many policies
○ Challenge: Provide efficient enforcement mechanism

● Abstractions: Support for a variety of use-cases
○ Opportunity: Build new abstractions on top of centralized state
○ Challenge: Identify suitable abstractions

A Database Abstraction For
Network Resource Management

11

Resource Allocation Database (RAD): An Overview

● Resource management
○ Centralization: Database tables store the state
○ Control: Manage bandwidth sharing decisions

12

Link_Id Rate Flows

Links
Flow_Id Src Dst Rate

Flows
Link_Id Flow_Id Rate

Reservations

R
A

D

Resource Allocation Database (RAD): An Overview

13

● Decoupling policy from mechanism
○ An efficient mechanism reflects database state

onto the switches

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne
R

A
D

Link_Id Rate Flows

Links
Flow_Id Src Dst Rate

Flows
Link_Id Flow_Id Rate

Reservations

Enforcement
Mechanism

● Resource management
○ Centralization: Database tables store the state
○ Control: Manage bandwidth sharing decisions

Resource Allocation Database (RAD): An Overview

14

● Abstractions:
○ Builds on top of RAD tables
○ Represents different use cases

● Decoupling policy from mechanism
○ An efficient mechanism reflects database state

onto the switches

CoFlow BigSwitch

R
A

D

Link_Id Rate Flows

Links
Flow_Id Src Dst Rate

Flows
Link_Id Flow_Id Rate

Reservations

Enforcement
Mechanism

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne

Abstractions● Resource management
○ Centralization: Database tables store the state
○ Control: Manage bandwidth sharing decisions

Use Case - Bandwidth Reservation

15

● Fundamental to provide guaranteed service
(e.g., Baraat, PDQ, D3)

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne

Step-1: Temporary Reservation
 Step-2: Commit or Abort

● Classic Approach:
○ Establish consensus: Multi-step process
○ Atomicity: Only reserve if all nodes can commit

Use Case - Bandwidth Reservation

16

● Fundamental to provide guaranteed service
(e.g., Baraat, PDQ, D3)

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne

Step-1: Temporary Reservation
 Step-2: Commit or Abort

● Classic Approach:
○ Establish consensus: Multi-step process
○ Atomicity: Only reserve if all nodes can commit

Use Case - Bandwidth Reservation

17

● Fundamental to provide guaranteed service
(e.g., Baraat, PDQ, D3)

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne

Step-1: Temporary Reservation
 Step-2: Commit or Abort

● Classic Approach:
○ Establish consensus: Multi-step process
○ Atomicity: Only reserve if all nodes can commit

18

● Fundamental to provide guaranteed service
(e.g., Baraat, PDQ, D3)

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne● Classic Approach:
○ Establish consensus: Multi-step process
○ Atomicity: Only reserve if all nodes can commit

● Using RAD: Database transactions
○ Opportunity! Built in support for atomic operations
○ Challenge! How to minimize the overhead of

distributed transactions?

R
A

D

Link_Id Rate Flows

Links
Flow_Id Src Dst Rate

Flows
Link_Id Flow_Id Rate

Reservations

Use Case - Bandwidth Reservation

Use Case - Virtual View of the Network

● Common requirement inside a cloud
(e.g., BigSwitch, Virtual Cluster)

Use Case - Virtual View of the Network

● Common requirement inside a cloud
(e.g., BigSwitch, Virtual Cluster)

Tenant-A
Tenant-B

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne

M

● Virtual private cluster (e.g., multi-tenant setting)
○ Independent control over allocated resources

Use Case - Virtual View of the Network

● Common requirement inside a cloud
(e.g., BigSwitch, Virtual Cluster)

Tenant-A
Tenant-B

Switch

1 K

Tenant-A

Policy-X

Switch

2 M

Tenant-B

Policy-Y

N

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne

M

● Virtual private cluster (e.g., multi-tenant setting)
○ Independent control over allocated resources

Use Case - Virtual View of the Network

● Using database views
○ Opportunity! Natural fit for data independence
○ Challenge! Can views be made updateable? Tenant-A

Tenant-B

R
A

D Link_Id Rate Flows

Links
Flow_Id Src Dst Rate

Flows
Link_Id Flow_Id Rate

Reservations

VPC

Node Flow Rate

Abstract
View● Common requirement inside a cloud

(e.g., BigSwitch, Virtual Cluster)

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne

M

● Virtual private cluster (e.g., multi-tenant setting)
○ Independent control over allocated resources

Challenges in Realizing RAD in Large Data Centers

● Scalability: Millions of requests per second?

● Performance: Minimize delays in accessing RAD?

23

RAD

Switch

Switch Switch

Switch

Switch

1 2 NK

D
at

ap
la

ne

Scalability and Performance Concerns

● Data Center network properties used by RAD
○ Topologies: Structured like a tree
○ Traffic locality: Majority of the traffic is rack-local

24

RAD

Agg

TOR TOR

Agg

Core

1 2 NK

D
at

ap
la

ne

Scalability and Performance Concerns

● Data Center network properties used by RAD
○ Topologies: Structured like a tree
○ Traffic locality: Majority of the traffic is rack-local

25

Logically Centralized
Resource Management Plane

● Opportunity! Network Aware Sharding
○ Shard network links across RAD instances
○ Each switch has a co-located RAD instance
○ Rack-local queries only contact local RAD replica

Agg

TOR TOR

Agg

Core

1 J NK

Scalability and Performance Concerns

● Data Center network properties used by RAD
○ Topologies: Structured like a tree
○ Traffic locality: Majority of the traffic is rack-local

26

Logically Centralized
Resource Management Plane

● Opportunity! Network aware replication
○ A switch only replicates to its children

(e.g., Core->Agg, Agg->TOR)
○ Choice over consistency guarantees

across replicas

Agg

TOR TOR

Agg

Core

1 J NK

Preliminary Evaluation: Overheads of RAD

● Objective: Evaluate the feasibility of using RAD

27

Preliminary Evaluation: Overheads of RAD

● Objective: Evaluate the feasibility of using RAD

28

● Setup:
○ Topology: 10 clients, 1 server, 1 RAD node
○ Database: Off-the-shelf Mysql
○ Workload: Websearch
○ Policy: Fairshare (TCP)
○ Metric: Flow completion time (FCT)

RAD

Server

1
2

10

Centralized
RAD

Preliminary Evaluation: Overheads of RAD

● Objective: Evaluate the feasibility of using RAD

29

● Setup:
○ Topology: 10 clients, 1 server, 1 RAD node
○ Database: Off-the-shelf Mysql
○ Workload: Websearch
○ Policy: Fairshare (TCP)
○ Metric: Flow completion time (FCT)

● Schemes:
○ TCP: Baseline (Does not use database)
○ RAD: Single centralized DB
○ RAD-Sharded: Each client has a local copy of

RAD

RAD

Server

1
2

10

Centralized
RAD

Server

1
2

10
Local

Replica

Sharded
RAD

Preliminary Evaluation:

30

Server

1
2

10

Preliminary Evaluation: Feasibility of RAD

31

RAD

Server

1
2

10

RAD
Centralized

Preliminary Evaluation: Feasibility of RAD

32

RAD

Server

1
2

10

RAD
Centralized

Upto 60% flows experience significant additional latency

Preliminary Evaluation: Overheads of RAD

33

Server

1
2

10
Local

Replica

RAD
Sharded

Preliminary Evaluation: Overheads of RAD

34

Server

1
2

10
Local

Replica

RAD
Sharded

Sharding helps in reducing RAD overhead

Preliminary Evaluation: Overheads of RAD

35

Server

1
2

10
Local

Replica

RAD
Sharded

Question! Can we do better?

Sharding helps in reducing RAD overhead

Summary

● Network resource management inside a cloud is a complex task

● A database approach inspired by SDN is promising

○ Simplifies the network resource management task

○ Interesting challenges to take care

● Opens avenues for exciting research

36

Questions?

37

Extra Slides

38

Implementation

● Database support
○ Mysql off-the-shelf
○ Caching: Many flow requests are identical from DB perspective

● End host rate control:
○ Modified TCP stack: Added bound support on TCP window

● Traffic Generation: trafficGenerator from HKUST-SING Lab

39

Technical Challenges and Opportunities

● Distributed Transaction
○ Typically a high latency operation
○ Recent advances (e.g., RDMA) can help

● Replication Overhead
○ A suitable consistency models can help lower the overheads

40

End-to-End example

● Rate reservation
○ Given: A flow size, deadline
○ Action: Allocate a suitable rate to meet the deadline

Setup: N1 wants to send data of size F in time D to N2

Agg

TOR TOR

Agg

Core

N1 N2 NzNK

Dataplane
Support

RM: Enforces the rate (R) into the data plane on flows
path

Step-3
Enforce (R)

Client: Node-1 initiates a new flow request and sends
flow size (F) and deadline info (D) to local RM replica

Step-1
(F, D)

RM: Calculates required rate (R = F/D) and update the
state or rejects the request

Step-2
R = F/D

41

Other Use Cases

● Accuracy VS Overhead Tradeoff
○ Different use cases may require different level of accuracy
○ RAD: Various consistency models

● Resource Management Sandboxing
○ A scheme may require sandboxing to tune/optimize various parameters
○ RAD: Checkpointing can help replay events

43

PathLinks
Path_Id Link_Id Seq Link_Id Rate Flow_Count

LinkState

PathMap
Path_Id Src Dst

Flows
Flow_Id Src Dst Rate Status

BigSwitch

Node Flow_Count Rate

CREATE VIEW BigSwitch
AS SELECT DISTINCT Src AS Node, Flow_Count, Rate
FROM PathMap
JOIN PathLinks ON PathMap.Path_ID=PathLinks.Path_ID
JOIN LinkState ON PathLinks.Link_ID=LinkState.Link_ID
WHERE PathLinks.Seq=0;

Fairsharing over BigSwitch Abstraction

Abstractions: Ravel vs RAD

44

Policy: FIFO

45

