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Serving deep learning models on public clouds becomes popular
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It is essential to recommend near-optimal configurations for DL inference

services, because...

Configuration includes: runtime & resource configurations.

Public clouds (e.g., Amazon EC2) provide more than 1,000 configuration candidates.

Runtime configurations

batch size

Resource configurations

GPU type, CPU number,
GPU memory, ... ...

There are so many
candidates that make it
difficult for users to
properly configure their
DL models.

Choosing a near-
optimal configuration
has many benefits,
Including...




A near-optimal configuration can improve up to 8x performance and reduce
over 60% budget

Improving performance Reducing budget

* The performance is evaluated by request per second, | |* The budget is evaluated by USD, and it is calculated

or RPS. by instance price x running time.
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Existing configuration recommender (CR) systems suffer from a severe cold
start problem, especially for unseen DL models

Existing CR systems, such as Morphling [1], reusing historical data from previous DL models to improve
the configuration search of “seen” models. They work as follows:

(a) Learning model-level (b) Running trials’ for the target (c) However, we find that
similarity (resource sensitivity DL model to search online for a model-level similarity suffers
curves) by offline profiling. near-optimal configuration. from severe cold start problem,
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n fact, serving unseen DL models is a common requirement

Survey of over 1,200 DL models in TensorFlow hub shows that newly developed DL
models and model variants are two main sources of unseen DL models.

For purposes such as improving model accuracy, improving performance, model variants include:
€ Changing the number of blocks. For instance, ResNet-152 has more blocks, deeper networks,
and also requires more resources than other ResNet models.
€ Optimizing block structure. For instance, Inception V4 combines the residual network structure

which was not present in previous versions of Inception (v3/v2/v1).
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Question: How to quickly adapt to unseen DL models?

Existing CR systems require dozens of trials to find near-optimal configurations for
unseen DL models, mainly because:

@ Large search space: over 1,000 configuration candidates.

€ Complex DL models and model variants.

€ Poor model-level similarity.

For a given unseen DL model,
how to find

a near-optimal configuration
over a few trials
. to alleviate the cold start problem?




Key insight: Leveraging operator-level instead of model-level similarity

Although there are significant differences between DL models, they all consist of a
limited type of DL operators’.

Operator-level similarity
has the potential
to quicky adapt to

unseen DL models.

There are two important observations to support this insight...

1. The DL operator is the minimal execution unit of the DL model and it has independent resource requirements. 8




Observation 1: Key Operators (KOs) to depict DL model’s performance

Through a large-scale evaluation on Amazon EC2 with 30 typical DL models, we find
that DL operators are better suited to describe the performance of DL models.
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For a given DL model, there are some Key Operators (KOPs) to

depict its GPU computation time and GPU memory utilization




Observation 2: Key Operator Resource Curves (KOP-RCs) to navigate the
search in a large search space
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Falcon: a Fast Adaptive Configuration Recommender System

Falcon works within a two-phase framework:
@ Offline Profiling: learn KOPs and KOP

-RCs.
® Online Searching: fast adaptive search by reusing KOPs and KOP-RCs.
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1. Learning KOPs and KOP-RCs from a large-scale evaluation on Amazon EC2

DL models

e Computer vision. It includes VGG, ResNet, YOLO,
DenseNet, etc.

e Natural language process. It includes LSTM, GRU,
Bert, etc.

e Generative adversarial network. It includes DC-
GAN, WG-AN, SGAN, etc.

e Recommend system. It includes NCF, DCN, DRN,

etc.

Configuration knobs

¢ Runtime configuration knobs. We mainly consider
the batch size as the runtime configuration knob, be-
cause it can profoundly impact the performance of DL
models [28].

¢ Resource configuration knobs. These configuration
knobs can be tuned when we deploy DL models on
public clouds. They include GPU type, GPU memory,

CPU cores, CPU L3 cache, RAM, GPU power 7 disk

speed, disk size, network speed, etc.

We make the following efforts to better profile KOPs and KOP-RCs:
@ Setting thresholds for each model to better identify KOPs.
® Pruning redundant configurations in KOP-RCs: PCA has been employed.

After the above steps, we learn an offline dataset D

containing KOPs and KOP-RCs. 12




2. Constructing trees to represent KOPs and KOP-RCs

We choose the tree structure, because:
® To better represent the complex relationship: an unseen DL model has

multiple KOPs, and a KOP has multiple KOP-RCs.
€ To partition a large search space into small search regions.
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As long as KOPs of an unseen model have been learned
before, we are able to represent this model in trees 13



2. Constructing trees to represent KOPs and KOP-RCs

Since we have offline data, why do we still need online search when a target DL
model arrives? There are two main reasons:
© Complex DL model variants: Their structure and parameters may be
completely different, and their resource sensitivities may also different. Thus,
reusing the best configuration from the offline dataset may lead to poor
performance.
® Conflicts in KOPs: The resource sensitivity may also be obscured by conflicts
in multiple KOPs. For instance, KOP convZ2d requires a larger batch size of 128,
while KOP dense achieves optimal norm.(RPS/Budget) when batch size is 64.
Therefore, when different KOPs are in a same DL model, it is difficult to
evaluate the impact of them via accurate estimation.

14




3. Fast adaptive search via Monte Carlo Tree Search and Bayesian
Optimization (MCTS-BO)

We implement MCTS-BO because it can:
¥ Reuse offline dataset: it can reuse optimal configurations from offline dataset.
¥ Balance exploitation and exploration: it applies go-left strategy to exploit

local tree regions, or applies go-right strategy to explore global tree regions.

Offline Profile

V(D) = 0.9||V(E) = 0.8

V(F) =07

V(G) =06

Online Search

MCTS-BO search policy:
go-left: exploiting locally

go-right: exploring globally

/ Search Order:
(1) V(D) =08 (2) V(D) =075}
(3) V(D) =0.72), (4) V(E) =085

(5) Repeat until a near-optimal result
is obtained.

MCTS-BO reuses offline datasets and searches them in different strategies

15




3. Fast adaptive search via Monte Carlo Tree Search and Bayesian
Optimization (MCTS-BO)

Suppose an unseen DL model contains two KOPs conv2d and relu, MCTS-BO searches
as follows:
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Evaluation

DL models: 30 typical DL models of CNN, RNN, Bert, Transformer, and GAN.
Configuration search space: 1,440 configuration candidates.
Baselines: Morphling@SoCC'21, Vesta@ICPP'21, HeterBO@IPDPS'20, Ernest@NSDI'16.

DL models: the source set for offline profiling,

and the target set for online searching.

Source set

Configurations
CPU cores: 1, 2, 3, 4, 5.

GPU type: M60, T4, K80, V100.

GPU memory (GB): 0.8, 1.2, 1.6, 2.4.

Batch size: 4, 8, 16, 32, 64, 128.

GPU power '!: 50%, 75%, 100%.
Baselines

Morphling: it employs meta-learning and BO to
reuse the model-level similarity.

Vesta: it leverages transfer learning to reuse
historical data.

No. Name No. Name
1 ResNet-152 19 | MobileNet V2
2 DenseNet-121 20 VGG 16
3 WGAN 21 ResNet-101
i DCGAN 22 | ResNet152 V2
5 SGAN 23 | Inception V2
6 MobileNet V3 24 | Inception V4
7 Inception-ResNet V2 | _ | 25 | DenseNet-201
8 Inception V3 s | 26 Bert-large
9 VGG19 S [ 27 GRU
10 Fast-RCNN & | 28| RoBERTa
11 Bert-base 29 | Transformer
12 NCF 30 Tacotron2
13 DCN
14 DRN
15 NasNet-large
16 LSTM

HeterBO: it provides heuristic rules to reuse prior
features of other models.
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Ernest: it abstracts and reuses patterns for different
models.




Evaluation

Metrics: search accuracy, search overhead and practical benefits.

Search accuracy: the performance gap between Search overhead: the number of trials &
the recommended and the optimal configurations the wall-clock time of running these trials

Practical benefits: maximize normalized
request per budget, or norm.(RPS/Budget)

We evaluate Falcon by the following experiment design:
& Effectiveness: (1) alleviating the cold start problem, (2) apple-to-apple comparisons, (3)
model-by-model comparisons, and (4) searching in good regions.
@ Robustness: (5) and (6) applying different parameters to the methods used by Falcon.
© Practical benefits for real-world applications: (7) evaluating the practical benefit of
recommending near-optimal configurations by using an enterprise-level DL benchmark [1].

[1] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William
Chou, et al. 2020. Mlperf inference benchmark. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 446-459.
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Evaluation 1: Alleviating the cold start problem

Comparison of different number of trials. The X-axis shows 6, 15, 30 trials,
respectively. The Y-axis shows the search accuracy of the DL models in the target set.
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Evaluation 2: Apple-to-apple comparison with Morphling

(a) Comparing the wall-clock time of the search in two cases.
(b) Comparing end-to-end time cost of the online search phase.
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(a) Wall-clock time in two cases. (b) Wall-clock time of the online
search phase.

Morphling Falcon

Falcon can reduce up to 80% of search overhead by

taking full advantage of KOPs and KOP-RCs
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Evaluation 3: Model-by-model configuration optimization

(a) Evaluating norm.(RPS/Budget) after 1.5 hours (six trials). (b) Evaluating norm.(RPS/Budget) after 3
hours and 45 minutes (15 trials). (c) Evaluating norm.(RPS/Budget) after 7.5 hours (30 trials).
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Evaluation 4: Searching in good regions

Comparison of the search path for an unseen DL model. The number in the plot shows
the xth trial. The green solid lines highlight good search regions. The red box highlights

near-optimal configurations.
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Evaluation 5&6: Robustness

Evaluation 5: Tuning the threshold
parameter to balance search accuracy
and search overhead.

Evaluation 6: Tuning the cut-off

parameter in PCA for pruning redundant
configurations.
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Evaluation 7: Practical benefits

Practical benefits of applying recommended configurations for three benchmark
applications. The optimal configurations were found by exhaustive search.
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Conclusion

Falcon is a novel CR system that can quickly adapt to unseen DL models. The main
insight is that Falcon presents a new perspective to alleviate the cold start problem by
leveraging Key Operators (KOPs) and Key Operator Resource Curves (KOP-RCs).
® Learning KOPs and KOP-RCs: Falcon launches a large-scale evaluation to cover
typical DL models, 1,000+ configuration candidates and all types of DL operators.
® Representing KOPs and KOP-RCs: Falcon handles the complex relationship
between DL models, KOPs and KOP-RCs in trees, and distinguishes good and bad
search regions.
¥ Fast adaptive searching via MCTS-BO: Falcon makes a balance between
exploitation and exploration. As a result, it can search more quickly and accurately
than other CR systems.

Limitation: The overhead will increase when there are unseen operators.

Falcon is now available at https://github.com/dos-lab/Falcon. 25



https://github.com/dos-lab/Falcon
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Thank you!
Any gquestions?

E-mail: wuyuewen@otcaix.iscas.ac.cn




