ACM Symposium
on Cloud Computing

Serving Unseen Deep Learning Models
with Near-Optimal Configurations:
a Fast Adaptive Search Approach ‘

Yuewen Wu *, Heng Wu *, Diaohan Luo *, Yuanjia Xu *, YiHu %,
Wenbo Zhang *, Hua Zhong *

%k Institute of Software, Chinese Academy of Sciences

+ University of Chinese Academy of Sciences

Serving deep learning models on public clouds becomes popular

Deep Learning Models

K R

Tensor

PYTHRCH

Public Clouds

o NI
EEramazon

Configuration

AAzu re

DL Inference Services

COMPUTER VISION

It is essential to recommend near-optimal configurations for DL inference

services, because...

Configuration includes: runtime & resource configurations.

Public clouds (e.g., Amazon EC2) provide more than 1,000 configuration candidates.

Runtime configurations

batch size

Resource configurations

GPU type, CPU number,
GPU memory,

There are so many
candidates that make it
difficult for users to
properly configure their
DL models.

Choosing a near-
optimal configuration
has many benefits,
Including...

A near-optimal configuration can improve up to 8x performance and reduce
over 60% budget

Improving performance Reducing budget

* The performance is evaluated by request per second, | |* The budget is evaluated by USD, and it is calculated

or RPS. by instance price x running time.
1.0 150 -
—l- Bert _
~@ -Fast-RCNN §]
— —A- Resnet a3
E ¥ Inception u 3 90 o
o T
£ g
m
2 30
m 05 = T T I T
8 Bert Fast-RCNN Resnet Inception
© 5
g]
£ e]
o) 3, 3.06
o 3 |
Q 24
o 7
° i 0.9 0.752 e
. 0 T T T T T T T
Batch size K80 T4 M60 V100
(P2.xlarge) (G4dn.2xlarge) (G3.4xlarge) (P3.2xlarge)

Existing configuration recommender (CR) systems suffer from a severe cold
start problem, especially for unseen DL models

Existing CR systems, such as Morphling [1], reusing historical data from previous DL models to improve
the configuration search of “seen” models. They work as follows:

(a) Learning model-level (b) Running trials’ for the target (c) However, we find that
similarity (resource sensitivity DL model to search online for a model-level similarity suffers
curves) by offline profiling. near-optimal configuration. from severe cold start problem,
1. The trial is a stress test of the target DL especially for unseen DL models.
model in a certain configuration to measure {58 Unssen DL Model (GRU).Norm (RPS/Budgah 0
itS performance /=@ Seen DL Model (ResNet-101)-Norm.(RPS/Budget)
’ []Unseen DL Model (GRU)-Wall-Clock Time]
- =104 _Seen DL Model (ResNet-101)-Wall-Clock Time 410w
- alle 2} 1 2
CR system Trials
a— ;g 1s F
- . Offline profilin , =06 | 8
b ffline profiling Online £ 14 2
;3 . Searching < 041 P 1 =
3:"‘ ;t - l . Each trial takes 15 minutes 12
. i B e o % w0 %
%\ g P 47113 = 0 5 10 15 20 25 30 35
*”" L a Near-0 @t! mJ Trials (#)
Model-level Similarity S onfiaurs ti@ﬂ 2.5 hours for seen DL ||7.5 hours for unseen DL
NNt Y e EeSTE S models because of high|| models because of low
model-level similarity model-level similarity
[1] Wang L, Yang L, Yu Y, et al. Morphling: Fast, Near-Optimal Auto-Configuration for Cloud-Native Model Serving[C]//Proceedings of the ACM Symposium 5

on Cloud Computing. 2021: 639-653.

n fact, serving unseen DL models is a common requirement

Survey of over 1,200 DL models in TensorFlow hub shows that newly developed DL
models and model variants are two main sources of unseen DL models.

For purposes such as improving model accuracy, improving performance, model variants include:
€ Changing the number of blocks. For instance, ResNet-152 has more blocks, deeper networks,
and also requires more resources than other ResNet models.
€ Optimizing block structure. For instance, Inception V4 combines the residual network structure

which was not present in previous versions of Inception (v3/v2/v1).
200

- Changing the Number of Blocks
] Optimizing Block Structure

-

[#2}

o
|

120

TransformerMoblleNet ResNet Inceptlon Yolo BERT
Partial statistics of the DL models and model variants.

Qo
o
|

DL Models and Model Variants
B
o
|

0

Question: How to quickly adapt to unseen DL models?

Existing CR systems require dozens of trials to find near-optimal configurations for
unseen DL models, mainly because:

@ Large search space: over 1,000 configuration candidates.

€ Complex DL models and model variants.

€ Poor model-level similarity.

For a given unseen DL model,
how to find

a near-optimal configuration
over a few trials
. to alleviate the cold start problem?

Key insight: Leveraging operator-level instead of model-level similarity

Although there are significant differences between DL models, they all consist of a
limited type of DL operators’.

Operator-level similarity
has the potential
to quicky adapt to

unseen DL models.

There are two important observations to support this insight...

1. The DL operator is the minimal execution unit of the DL model and it has independent resource requirements. 8

Observation 1: Key Operators (KOs) to depict DL model’s performance

Through a large-scale evaluation on Amazon EC2 with 30 typical DL models, we find
that DL operators are better suited to describe the performance of DL models.

gmo I : conv2d
o T 7 : : | transpose eSS
E 80 1 1€ OF 0 ¢ ;Ll%l] strided_slice
(e " i
O 60 == I — : :
© - l = 48
"g_ 40 f I I : Af :
& - : | : : I)
Q 20 : . H [20] ;
S 4 N 1| [5] 1 I ; I
O ' . -
50 . . el
RGSNGK ° acepto" oo™ o102 transt© (
W) W) W) @ert) st ©

For a given DL model, there are some Key Operators (KOPs) to

depict its GPU computation time and GPU memory utilization

Observation 2: Key Operator Resource Curves (KOP-RCs) to navigate the
search in a large search space

Add

Conv2d | Tanh

Batch_norm Dense
1.0 1.0 1.0 j
:'c:: 0,8\ g E o_a]

Navigate the search (2):
these configurations should be

filtered out because they have
- negligiblei

mpact on performance.
, . b

Navigate the search (1):
configurations with batch
size > 64 can achieve better

(c) Concave.

(d) Plane.
For each KOP, there are four typical Key Operator Resource Curves
(KOP-RCs) to navigate the search of near-optimal configurations

Falcon: a Fast Adaptive Configuration Recommender System

Falcon works within a two-phase framework:
@ Offline Profiling: learn KOPs and KOP

-RCs.
® Online Searching: fast adaptive search by reusing KOPs and KOP-RCs.

S o(Cveru |
H
(@) . (©)
Existing) Unseen .
DL Models Profiler DL Models Monte Carlos
(d) Tree Search
Key Operators || KOP Resource Curves \
(KOPs) (KOP-RCs) Searcher N
__...-D Bayesian
— €) Optimization
Trees Near-Optimal \
Configurations)}
ﬁ

@ffitliinerRroftiling

@inllinesSealichiing

11

1. Learning KOPs and KOP-RCs from a large-scale evaluation on Amazon EC2

DL models

e Computer vision. It includes VGG, ResNet, YOLO,
DenseNet, etc.

e Natural language process. It includes LSTM, GRU,
Bert, etc.

e Generative adversarial network. It includes DC-
GAN, WG-AN, SGAN, etc.

e Recommend system. It includes NCF, DCN, DRN,

etc.

Configuration knobs

¢ Runtime configuration knobs. We mainly consider
the batch size as the runtime configuration knob, be-
cause it can profoundly impact the performance of DL
models [28].

¢ Resource configuration knobs. These configuration
knobs can be tuned when we deploy DL models on
public clouds. They include GPU type, GPU memory,

CPU cores, CPU L3 cache, RAM, GPU power 7 disk

speed, disk size, network speed, etc.

We make the following efforts to better profile KOPs and KOP-RCs:
@ Setting thresholds for each model to better identify KOPs.
® Pruning redundant configurations in KOP-RCs: PCA has been employed.

After the above steps, we learn an offline dataset D

containing KOPs and KOP-RCs. 12

2. Constructing trees to represent KOPs and KOP-RCs

We choose the tree structure, because:
® To better represent the complex relationship: an unseen DL model has

multiple KOPs, and a KOP has multiple KOP-RCs.
€ To partition a large search space into small search regions.

A Tree for KOP — conv2d D N),

" Split tree regions in a tree

‘/ Construct a tree for a
according to KOP-RCs

given KOP

. X i —
As long as KOPs of an unseen model have been learned
before, we are able to represent this model in trees 13

2. Constructing trees to represent KOPs and KOP-RCs

Since we have offline data, why do we still need online search when a target DL
model arrives? There are two main reasons:
© Complex DL model variants: Their structure and parameters may be
completely different, and their resource sensitivities may also different. Thus,
reusing the best configuration from the offline dataset may lead to poor
performance.
® Conflicts in KOPs: The resource sensitivity may also be obscured by conflicts
in multiple KOPs. For instance, KOP convZ2d requires a larger batch size of 128,
while KOP dense achieves optimal norm.(RPS/Budget) when batch size is 64.
Therefore, when different KOPs are in a same DL model, it is difficult to
evaluate the impact of them via accurate estimation.

14

3. Fast adaptive search via Monte Carlo Tree Search and Bayesian
Optimization (MCTS-BO)

We implement MCTS-BO because it can:
¥ Reuse offline dataset: it can reuse optimal configurations from offline dataset.
¥ Balance exploitation and exploration: it applies go-left strategy to exploit

local tree regions, or applies go-right strategy to explore global tree regions.

Offline Profile

V(D) = 0.9||V(E) = 0.8

V(F) =07

V(G) =06

Online Search

MCTS-BO search policy:
go-left: exploiting locally

go-right: exploring globally

/ Search Order:
(1) V(D) =08 (2) V(D) =075}
(3) V(D) =0.72), (4) V(E) =085

(5) Repeat until a near-optimal result
is obtained.

MCTS-BO reuses offline datasets and searches them in different strategies

15

3. Fast adaptive search via Monte Carlo Tree Search and Bayesian
Optimization (MCTS-BO)

Suppose an unseen DL model contains two KOPs conv2d and relu, MCTS-BO searches
as follows:

conv2d ‘
4 ’ qm+1(batch size = 96) | convza

(a) Identify KOPs d [¢] _ fle

— Actual z & [— Actua A

and KOP-RCs after |SEs=dZ 5 | serego
its first trial el §—7

(b) Exploit locally or
() KOF conily explore globally

Qym(3 < CPU cores £ 5) relu . (c) Return a
Quns1(12 < GPU mem < 1.6) [= E ﬂ:m (14<GPUmem{1.6) -

T A T\ =% near-optimal

_;? — - mMcTS-B0 [\ | Sl== MCTS-BOP\ ? f. .

NV AN A J4Cll configuration

- \ ! ¥ o A y ‘

E N v : -)

§ § ~over a few trials

0 12 16 0 121416 L
GPU mem (GB) GPU mem (GB) "~ GPU mem (GB)

16
(c) KOP relu the 1st trial. (d) KOP relu the 2nd trial. (e) KOP relu the 3rd trial.

Evaluation

DL models: 30 typical DL models of CNN, RNN, Bert, Transformer, and GAN.
Configuration search space: 1,440 configuration candidates.
Baselines: Morphling@SoCC'21, Vesta@ICPP'21, HeterBO@IPDPS'20, Ernest@NSDI'16.

DL models: the source set for offline profiling,

and the target set for online searching.

Source set

Configurations
CPU cores: 1, 2, 3, 4, 5.

GPU type: M60, T4, K80, V100.

GPU memory (GB): 0.8, 1.2, 1.6, 2.4.

Batch size: 4, 8, 16, 32, 64, 128.

GPU power '!: 50%, 75%, 100%.
Baselines

Morphling: it employs meta-learning and BO to
reuse the model-level similarity.

Vesta: it leverages transfer learning to reuse
historical data.

No. Name No. Name
1 ResNet-152 19 | MobileNet V2
2 DenseNet-121 20 VGG 16
3 WGAN 21 ResNet-101
i DCGAN 22 | ResNet152 V2
5 SGAN 23 | Inception V2
6 MobileNet V3 24 | Inception V4
7 Inception-ResNet V2 | _ | 25 | DenseNet-201
8 Inception V3 s | 26 Bert-large
9 VGG19 S [27 GRU
10 Fast-RCNN & | 28| RoBERTa
11 Bert-base 29 | Transformer
12 NCF 30 Tacotron2
13 DCN
14 DRN
15 NasNet-large
16 LSTM

HeterBO: it provides heuristic rules to reuse prior
features of other models.

[y
~l

EfficientNet-widese-b4

[y
co

YOLO V5

Ernest: it abstracts and reuses patterns for different
models.

Evaluation

Metrics: search accuracy, search overhead and practical benefits.

Search accuracy: the performance gap between Search overhead: the number of trials &
the recommended and the optimal configurations the wall-clock time of running these trials

Practical benefits: maximize normalized
request per budget, or norm.(RPS/Budget)

We evaluate Falcon by the following experiment design:
& Effectiveness: (1) alleviating the cold start problem, (2) apple-to-apple comparisons, (3)
model-by-model comparisons, and (4) searching in good regions.
@ Robustness: (5) and (6) applying different parameters to the methods used by Falcon.
© Practical benefits for real-world applications: (7) evaluating the practical benefit of
recommending near-optimal configurations by using an enterprise-level DL benchmark [1].

[1] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William
Chou, et al. 2020. Mlperf inference benchmark. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 446-459.

18

Evaluation 1: Alleviating the cold start problem

Comparison of different number of trials. The X-axis shows 6, 15, 30 trials,
respectively. The Y-axis shows the search accuracy of the DL models in the target set.

-

o

o
]

Recommended / Optimal (%)

-+ T n ! -Falconl

1 l R Morphling
PR Vesta

[9)]
o
|

HeterBO
[TT] Ernest

0 | | | | | | | | | | | | | | | | |

(6/1440) (15/1440) (30/1440)
Trials/Seach Space

For unseen DL models, only Falcon can find

near-optimal configurations after 6 trials 19

Evaluation 2: Apple-to-apple comparison with Morphling

(a) Comparing the wall-clock time of the search in two cases.
(b) Comparing end-to-end time cost of the online search phase.

124 777 (a) Unseen Model + Seen Operator 10
1Y (b) Unseen Model + Unseen Operator B Exploitation
s 207 ‘ Exploration
g] ® 8- nitialization
2 8- 3 .
% N £
E | ‘ 2 65
i G- £
x~ & =
o x
i) Q 4-
o
3 % S
T =]
< @
2- , = 21
0- 0

orphling Falcon

(a) Wall-clock time in two cases. (b) Wall-clock time of the online
search phase.

Morphling Falcon

Falcon can reduce up to 80% of search overhead by

taking full advantage of KOPs and KOP-RCs

20

Evaluation 3: Model-by-model configuration optimization

(a) Evaluating norm.(RPS/Budget) after 1.5 hours (six trials). (b) Evaluating norm.(RPS/Budget) after 3
hours and 45 minutes (15 trials). (c) Evaluating norm.(RPS/Budget) after 7.5 hours (30 trials).

1| Falcon [Morphling B Vesta [B588 HeterBO [T Emest|

N
o

Norm.(RPS/Budget)
o ©o o
B [=] @

o
[+
1

o
o
I

1| Falcon [Morphling B Vesta [B288 HeterBO [[TII] Emest| (a)

-
=]

Norm.(RPS/Budget)
o o o
E-N [=] [o0]

<o
[+
1

o
o
I

(b)

55 HeterBO [[II] Ernest|

_ [Falcon [Morphling B Vesta

o

o
[e-]
1

Norm.(RPS/Budget)
o o
£ (=]

o
)

In most of the cases, Falcon achieves better
opletietyz Voo search accuracy (higher norm.(RPS/Budget))

o
o
I

21

MobileNet V2 VGG16 ResNet-101 ResNet152 V2 Inception V2 Inception V4 DenseNet-201 Bert-large GRU RoBERTa Transformer Tacotron2

MobileNet V2 VGG16 ResNet-101 ResNet152 V2 Inception V2 Inception V4 DenseNet-201 Bert-large GRU RoBERTa Transformer Tacotron2

RTa Transformer Tacotron2

Evaluation 4: Searching in good regions

Comparison of the search path for an unseen DL model. The number in the plot shows
the xth trial. The green solid lines highlight good search regions. The red box highlights

near-optimal configurations.

-1 1 |- Falcon
128 4 LI~ Morphling

64

w
N
1 "

Batchsize
>

o
1 N

T T T T T
0.8 1.2 1.6 2.0 24
GPU memory

Falcon can quickly locate near-optimal search
regions via MCTS-BO 2

Evaluation 5&6: Robustness

Evaluation 5: Tuning the threshold
parameter to balance search accuracy
and search overhead.

Evaluation 6: Tuning the cut-off

parameter in PCA for pruning redundant
configurations.

[==] Search Accuracy (Recommended / Optimal %)
0 20 40 60 80 100

1% threshold

5% threshold

10% threshold 5

T T P R P

| | | | | |
<25

20 15 10 5 0
Search Overhead (Trials)

- 20
[80% 27 85% N 90% B2 95%)|
9 _
— _ [72)
= 100 |2
> E =
O = =
® [N
50O 9
8 o ©
pp: 1°%
S S 80- 8
T = -
@ [&]
» & 15 5
b Q
E w
60 0

The Cut-off Parameter

Falcon can strike a balance between

search accuracy and search overhead 23

Evaluation 7: Practical benefits

Practical benefits of applying recommended configurations for three benchmark
applications. The optimal configurations were found by exhaustive search.

: Instance Type
I Gdad xlarge
| Gddn.2xlarge
(Optimal)
] P3.2xlarge
G4.2xlarge
|G5.xlarge (Recommended)
. G3.2xlarge
Mobile-Bert | .
| P2.2xlarge (Optimal)
G5.xlarge
| G4dn.2xlarge
| G3.4xlarge
DLRM | P3.2xlarge
{Optimal)
(Recommended)
- r - - < - T - 1T T - 1 T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Norm.(RPS/Budget)

Falcon can recommend an optimal (or a near-optimal)

instance type to achieve high norm.(RPS/Budget) 24

Conclusion

Falcon is a novel CR system that can quickly adapt to unseen DL models. The main
insight is that Falcon presents a new perspective to alleviate the cold start problem by
leveraging Key Operators (KOPs) and Key Operator Resource Curves (KOP-RCs).
® Learning KOPs and KOP-RCs: Falcon launches a large-scale evaluation to cover
typical DL models, 1,000+ configuration candidates and all types of DL operators.
® Representing KOPs and KOP-RCs: Falcon handles the complex relationship
between DL models, KOPs and KOP-RCs in trees, and distinguishes good and bad
search regions.
¥ Fast adaptive searching via MCTS-BO: Falcon makes a balance between
exploitation and exploration. As a result, it can search more quickly and accurately
than other CR systems.

Limitation: The overhead will increase when there are unseen operators.

Falcon is now available at https://github.com/dos-lab/Falcon. 25

https://github.com/dos-lab/Falcon

ACM Symposium
on Cloud Computing

Thank you!
Any gquestions?

E-mail: wuyuewen@otcaix.iscas.ac.cn

