A Case for using Cache Line Deltas for High
Frequency VM Snapshotting

*Daniel Waddington

Moshik Hershcovitch
Swaminathan Sundararaman
Clem Dickey

IBM Research Almaden

Disclaimer

© IBM Corporation 2022
THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION,
IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED.

IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY
IBM WITHOUT NOTICE.

IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR
ANY OTHER DOCUMENTATION.

NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

« CREATING ANY WARRANTY OR REPRESENTATION FROM IBM (OR ITS AFFILIATES OR ITS OR THEIR SUPPLIERS AND/OR LICENSORS); OR

« ALTERING THE TERMS AND CONDITIONS OF THE APPLICABLE LICENSE AGREEMENT GOVERNING THE USE OF IBM SOFTWARE.

IBM'’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s sole discretion.
Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a
purchasing decision. The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver

any material, code or functionality. Information about potential future products may not be incorporated into any contract. The development,
release, and timing of any future features or functionality described for our products remains at our sole discretion.

© 2022 IBM Corporation

Outline

- Problem context - VM snapshotting

- New opportunities to reduce copy-
amplification with emerging CXL
hardware

- Case study and quantitative
evaluation of gains from leveraging
CXL-based Intelligent Memory
Controller

© 2022 IBM Corporation

Continuous VM snapshotting ot svapshot AM
for high-availability | Falure v

3 Epoch 5 :
- E—
| Data Loss : Down Time
P \ Time *
[VM - active] + VM - standby } E }
Voo — g B
____________ >» Recovery Point Recovery Time
vCPU vCPU Objective (RPO) ! Objective (RTO)
memory [— -~ — ->» memory
storage |- ------- - ——» | storage Continuous synchronization of active and standby
snapshot synchronize .] c .
virtual machine instances — on failure the standby
machine “takes over”
Active VM is periodically suspended,‘ caches flushed, Compute, memory, network and storage all need to
IO flushed and changes (deltas) copied across the be coherent (achieving this is outside the scope of
network to a standby instance the paper)
State-of-the-art hypervisors use 4KiB page Minimizing snapshot epoch reduces RPO and the
granularity to identify memory changes amount of volume data that must be retained for

replay in the network

© 2022 IBM Corporation

CXL (Compute eXpress Link)

CXL is an open standard industry-supported
cache-coherent interconnect for processors,
memory expansion, and accelerators

- https://www.computeexpresslink.org/
Specification version 2.0 ratified

CXL leverages a PClIe 5 feature that allows
alternate protocols to use the physical PCle
layer

Intel Sapphire Rapids and AMD Genoa
expected to support CXL

IBM OpenCAPI and Open Memory Interface
to be absorbed by CXL

© 2022 IBM Corporation

CXL (Compute eXpress Link) hostoram

D D I:I Type 2 Device
Type 1: Devices coherently access host memory : CXL.io
=|cache|z..... CXL.cache - =|cache|=
Type 2: Devices share their own memory with host = = CXL.mem = =
Type 3: Memory expansion device 5 CPU E 3 [= D |:| |:|

N ! i li I
accelerator device memory

host DRAM Type 1 Device device (e.g., HBM)

ajujn

good Type 3 Device

=|cache|=..... CXCLXL.ioh w.z|cache|= .
= = -cac e = - A Y = = = = = |
- \- - - =|cache|=..... CXL.io - I A DDD
- = - = - = CXL.mem = e nannan,
S i = I = FFFFE

UL TITiT Tcpult memory e E”:“:I

accelerator = = expander
device T expander

memory
© 2022 IBM Corporation

Intel Agilex Plattorm

intel CXLorPCle5.0 [
XeoON ﬁ AGILEX
x16

Memory Memory

https://www.intel.com/content/www/us/en/products/details/fpga/agilex/i-series.html

© 2022 IBM Corporation

I-Series FPGA / SoC accelerator
Combination of hard and soft IP

Intel CXL hard IP supports Type 1, Type 2, and
Type 3 configurations and specification revisions 1.1
and 2.0 (R-tiles)

Other vendors IP can also be used with the platform

Hypothesis

We can apply CXL-based technology to the continuous snapshotting problem

We can improve performance by reducing time to identify modified (dirty) memory since last epoch and
reducing copy-amplification and ultimately the volume of data to transmit across the network

_____ App
E Guest
E 550 CXL Type 2 IMC
PR Hypervisor Synchronization Engine Remote
_) Snapshot Scheduler Standby
———— ! DRAM NIC @ System
CPU ' DRAM ! |

This work examines the reduction in copy-amplification through finer granularity and compression

© 2022 IBM Corporation

Method

Run a broad set of real workloads on QEMU (600x
200ms epochs)

Take full memory snapshots at each epoch

Off-line ...
Derive deltas (4KiB and 64B)

Optionally apply compression (RLE, Zlib) — individual
cache line or packed cache lines

Combine deltas to examine impact of larger epochs

Derive mean page-write density and total transfer size

modified-CL-count(p)

WDy = vypep,: ”

© 2022 IBM Corporation

Full memory
snapshots
(200 ms)

Deltas
(200 ms)

Combined
Deltas
(400 ms)

time

Y

Benchmarks

DeathStarBench (Gan et al.)

microservices benchmark
https://github.com/delimitrou/DeathStarBench

Phoronix Test Suite
https://openbenchmarking.org/

Test Description

dsb-hotel DeathStarBench - hotel booking app

dsb-social DeathStarBench - social media app

dsb-media DeathStarBench - media distribution app

sqlite Simple SQLite database benchmark

ebizzy Workload resembling web-server

leveldb Key-value store that uses Snappy compression

influxdb InfluxDB time-series database

h M he i 'y cache put workload

build-gee Compile the GCC compiler

quantlib Quantitative finance for modeling, trading and risk
management

ngspice SPICE circuit emulator

savina Savina concurrency benchmark for Reactors.IO

© 2022 IBM Corporation

py-imgseg
py-fit
gromacs
dolfyn
himeno
py-3drotate

Python image segmentation (skimage)

Python FFT signal processing on audio (scipy)
Molecular dynamics compute (water_GMX50)
Computational Fluid Dynamics (CFD) simulation
Linear solver of pressure Poisson

Python 3D matrix rotation (numpy)

nettle-aes AES cryptography from the Nettle library

py-graph-spn Python weighted graph spanning tree

py-feature Python logistic regression feature selection

py-faces Python face recognition using eigenfaces and SVMs

als MLIib Alternating Least Squares (ALS) matrix
factorization

forest MLIib Random forest classifier

bayes MLIib multinomial naive Bayes classifier

genetic Genetic algorithm using the Jenetics library

onednn Deep neural network training

rnnoise Recurrent neural network for audio noise reduction

cobweb Akka unbalanced cobwebbed tree

Categories:

Microservices
Cloud
Enterprise

Numerical

AI/ML

Plot interpretation

mean write
DeathStarBench Hotel .
density of
>1.0 dified
i BN User maoditiea user-
g 0.8- Kernel space pages
= (not stacked)
£0.6-
=
L 0.4
O
a.
c 0.2)
] mean write
=00 density of
modified
8300 mmm PG-granular kernel-space
-g CL-granular pages
e
o
=
()
=
8 *
total write =
volume at page 0 ! ! ' ' ' '
° ranul r[i)t 8 0 100 200 300 400 500 600
granutarity Epoch (200 ms) —
. epoch of 200ms
total write volume at
cache line granularity
Test Memory Duration Copy
F i Bandwidth
Test Epoch WD, WDy, CLmod PGmoa Amp R:;:f:i‘:: P
Count MiB MiB Factor (MiB) (seconds) (MiB/s)

© 2022 IBM Corporation dsb-hotel 600 0.45 0.08 20615.69 4627591 2.24 dsb-hotel 25660.22 120 213.84

Sample plots

>1.0 >10 o
@ . User @ — User
$0.8- = Kernel $0.8- mm Kemel
o [=)
Los £o6-
= =
goa- go4-
0.2 02
3 3
Z0.0- g " " ; =00
—~ 50 - =W PG-granular —_ . PG-granular
2 CL-granular 2 50- CL-granular
= =
Z 40 Za0-
g 2
&30 £ 30-
£5- s
20 920 !
£10- S10- i ’ |
NS | o __ I | O | ‘ | |
0 100 200 300 400 500 600 0 300 500 600
Epoch (200 ms) Epoch (200 ms)
memcache: 44.6 amp. factor, 157.8 MiB/s transfer reduction ngspice: 2.44 amp. factor, 113 MiB/s transfer reduction
210 >1.0-
2 z
g 0.8- 808
2os- 206
= =
3 0.4- ;
E,0.4 boa
0.2 <02
3 s |
Z0.0- =00
- . PG-granular 150 mmm PG- 1
@] 2 granular
é 20 CL-granular E CL-granular
= =
S5 2100- ‘ ’
: | : '
= 10- | ‘ | 3 l
@ =
L A | £
£] ¢
0 1 i 1 : L _J_J_._;._.._A_ 2 ‘ rl l
0 100 200 300 400 500 600 0 ! ! ‘ ‘ : |
Epoch (200 ms) 0 100 200 300 400 500 600

Epoch (200 ms)

dolfyn: 20.46 amp. factor, 0.36 MiB/s transfer reduction forest: 1.47 amp. factor, 68 MiB/s transfer reduction

© 2022 IBM Corporation

Change in copy-amplification
with change in epoch

Does epoch size impact amplification?

© 2022 IBM Corporation

Amplification Factor

40

30 1

20 A

—eo— sqlite himeno
o leveldb —<— memcache
—=— dolfyn —— nettle-aes
~m- py-graph-tri --<-- ngspice
—— py-graph-spn -#»-- rnnoise
————— py-faces + dsb-hotel
py-3drotate ® dsb-social
————— genetic ¢ dsb-media
i
- e
= —— — % S—

200

400 600

800 1000 1200

Epoch (milliseconds)

1400

13

Summary of results

Measured
amplification factors
ranging from 1.02 to
44.6

Mean amplification
factor across all
experiments at 200ms
epochis 9.34

© 2022 IBM Corporation

Measured copy-
reduction bandwidth at
200ms epoch ranging
from 0.19 MiB/s to
393.5 MiB/s

Mean copy-reduction
across all experiments
Is 57 MiB/s

(no compression)

Max observed
reduction in copy-
amplification by
increasing epoch to 1.4
second epoch (7x) is
17% (memcache)

Zlib compression of
packed cachelines
reduces data volume
to 34% of original size

XOR RLE compression
of packed cachelines
reduces data volume
to 56% of original size

14

Conclusions

© 2022 IBM Corporation

Most applications write pages at 100-200 MB/s for a
200ms epoch (i.e., up to 1GB/s)

Worst-case spikes can create 500MB/epoch
(2.5GB/s)

By using cache line granularity (enabled by CXL
technology) — data volume can be reduced by ~10x
depending on the workload

This data volume can be reduced approximately by
half again by using fast XOR-RLE compression

Combining cache line deltas and compression
brings worst case to ~125MiB/s

Expanding epoch (which impacts volume of state
that would need to be held in network) does not
significantly impact write-amplification but of
course can reduce data transfer volume

A CXL-based FPGA prototype could bring value
providing that the base CXL memory access
slowdown is not overwhelming

15

Questions?

© 2022 IBM Corporation

16

_-"

