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Outline

- Problem context - VM snapshotting

- New opportunities to reduce copy-
amplification with emerging CXL
hardware

- Case study and quantitative
evaluation of gains from leveraging
CXL-based Intelligent Memory
Controller
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CXL (Compute eXpress Link)

CXL is an open standard industry-supported
cache-coherent interconnect for processors,
memory expansion, and accelerators

- https://www.computeexpresslink.org/
Specification version 2.0 ratified

CXL leverages a PClIe 5 feature that allows
alternate protocols to use the physical PCle
layer

Intel Sapphire Rapids and AMD Genoa
expected to support CXL

IBM OpenCAPI and Open Memory Interface
to be absorbed by CXL
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Intel Agilex Plattorm
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x16

Memory Memory

https://www.intel.com/content/www/us/en/products/details/fpga/agilex/i-series.html
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I-Series FPGA / SoC accelerator
Combination of hard and soft IP

Intel CXL hard IP supports Type 1, Type 2, and
Type 3 configurations and specification revisions 1.1
and 2.0 (R-tiles)

Other vendors IP can also be used with the platform




Hypothesis

We can apply CXL-based technology to the continuous snapshotting problem

We can improve performance by reducing time to identify modified (dirty) memory since last epoch and
reducing copy-amplification and ultimately the volume of data to transmit across the network
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This work examines the reduction in copy-amplification through finer granularity and compression
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Method

Run a broad set of real workloads on QEMU (600x
200ms epochs)

Take full memory snapshots at each epoch

Off-line ...
Derive deltas (4KiB and 64B)

Optionally apply compression (RLE, Zlib) — individual
cache line or packed cache lines

Combine deltas to examine impact of larger epochs

Derive mean page-write density and total transfer size

modified-CL-count(p)

WDy = vypep,: ”
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Benchmarks

DeathStarBench (Gan et al.)

microservices benchmark
https://github.com/delimitrou/DeathStarBench

Phoronix Test Suite
https://openbenchmarking.org/

Test Description

dsb-hotel DeathStarBench - hotel booking app

dsb-social DeathStarBench - social media app

dsb-media DeathStarBench - media distribution app

sqlite Simple SQLite database benchmark

ebizzy Workload resembling web-server

leveldb Key-value store that uses Snappy compression

influxdb InfluxDB time-series database

h M he i 'y cache put workload

build-gee Compile the GCC compiler

quantlib Quantitative finance for modeling, trading and risk
management

ngspice SPICE circuit emulator

savina Savina concurrency benchmark for Reactors.IO
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py-imgseg
py-fit
gromacs
dolfyn
himeno
py-3drotate

Python image segmentation (skimage)

Python FFT signal processing on audio (scipy)
Molecular dynamics compute (water_GMX50)
Computational Fluid Dynamics (CFD) simulation
Linear solver of pressure Poisson

Python 3D matrix rotation (numpy)

nettle-aes AES cryptography from the Nettle library

py-graph-spn Python weighted graph spanning tree

py-feature Python logistic regression feature selection

py-faces Python face recognition using eigenfaces and SVMs

als MLIib Alternating Least Squares (ALS) matrix
factorization

forest MLIib Random forest classifier

bayes MLIib multinomial naive Bayes classifier

genetic Genetic algorithm using the Jenetics library

onednn Deep neural network training

rnnoise Recurrent neural network for audio noise reduction

cobweb Akka unbalanced cobwebbed tree

Categories:

Microservices
Cloud
Enterprise

Numerical

AI/ML




Plot interpretation
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Sample plots
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Change in copy-amplification
with change in epoch

Does epoch size impact amplification?
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Summary of results

Measured
amplification factors
ranging from 1.02 to
44.6

Mean amplification
factor across all
experiments at 200ms
epochis 9.34
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Measured copy-
reduction bandwidth at
200ms epoch ranging
from 0.19 MiB/s to
393.5 MiB/s

Mean copy-reduction
across all experiments
Is 57 MiB/s

(no compression)

Max observed
reduction in copy-
amplification by
increasing epoch to 1.4
second epoch (7x) is
17% (memcache)

Zlib compression of
packed cachelines
reduces data volume
to 34% of original size

XOR RLE compression
of packed cachelines
reduces data volume
to 56% of original size
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Conclusions

© 2022 IBM Corporation

Most applications write pages at 100-200 MB/s for a
200ms epoch (i.e., up to 1GB/s)

Worst-case spikes can create 500MB/epoch
(2.5GB/s)

By using cache line granularity (enabled by CXL
technology) — data volume can be reduced by ~10x
depending on the workload

This data volume can be reduced approximately by
half again by using fast XOR-RLE compression

Combining cache line deltas and compression
brings worst case to ~125MiB/s

Expanding epoch (which impacts volume of state
that would need to be held in network) does not
significantly impact write-amplification but of
course can reduce data transfer volume

A CXL-based FPGA prototype could bring value
providing that the base CXL memory access
slowdown is not overwhelming
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Questions?
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