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Serverless Computing is Convenient for Users

Users:

* Define a function

* Specify events as execution triggers

* Pay only for the actual runtime of the function activation




Serverless Computing is Challenging for Providers

Providers need to manage:
* Function Placement

* Scaling

* Runtime Environment




Serverless Function Lifecycle
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Serverless Scheduling Goals

Serverless schedulers need to be:

* Load-aware — Avoid excessive queueing

* Cost-aware — Use as few servers as possible
* Locality-aware — Avoid cold starts



Serverless Scheduling Decisions

* When an invocation should be scheduled to a Worker?

nich Worker should handle each invocation?

\"\
Which intra-Worker scheduling policy should be used?



When an invocation should be scheduled to a Worker?¢
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+ Tasks always ready to execute + Perfect load balancing
-- Imperfect load balancing -- Head-of-line blocking



Where should a function invocation execute?
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Which intra-Worker scheduling policy should be used?

* First-Come-First-Serve
* Processor-Sharing



Serverless Scheduling Taxonomy

T/LB/S

T: Type of binding used (early E vs. late L)
LB: LOC - locality-based

LL — least-loaded

R — random
S: intfra-Worker policy

FCFS — First-Come-First-Serve

PS — Processor Sharing



Existing Approaches

Policy ldbmrme | Crdmewae | leesiereme

OpenWhisk | E/LOC/PS X X v
kNative E/R/PS X X v
Sparrow | Late Binding v X X
Hermod |E/Hybrid/PS v v v
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Exploring the Policy Space using Queueing Simulation

Setup: 4 Workers — 12 cores each

. _ tion time + queueing + scheduling
Metric: 99% Slowdown = ===
99 A) S execution time

Workload = Azure Trace [ATC 2020]
Highly-variable execution times
Highly-skewed invocations
50 functions



Least-Loaded Balancing Dominates

99% Slowdown
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Processor-Sharing in the Workers is Necessary

99% Slowdown
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Processor-Sharing in the Workers is Necessary

99% Slowdown
QD@ N & O ©®

10

—¥— E/LL/PS —8— Late Binding

Late Binding also suffers from
head-of-line blocking
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Conclusion

The load-aware E/LL/PS policy is optimal

NO
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E/LL/PS Suffers from Practical Problems

1. Low resource efficiency

Load Balancer

The policy also needs to be cost-aware




E/LL/PS Suffers from Practical Problems

1. Low resource efficiency
2. Increased Cold Starts

The policy also needs to be locality-aware




Solution: Hermod (E / Hybrid / PS)

cost-aware hybrid
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Solution: Hermod (E / Hybrid / PS)

f1] Load Balancer
locality-aware

load ba ancing Invoker Invoker Invoker

when cost and
load allow it
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Evaluation
Baselines
* OpenWhisk (E/LOC/PS)

* Late Binding (Sparrow)
* lLeast-Loaded (E/LL/PS)

Testbed: 9 x 12-core servers

Workload: Azure Trace scaled down to 50 functions



How does Hermod improve performance?
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How does Hermod behave with different distributions?

Exponential execution time distribution
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Hermod performs well even in
homogeneous execution time

distributions
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How does Hermod affect resource consumption?

"

Least-Loaded uses all available
servers even for low loads
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More details in the paper

* Simulation of larger setups and more complex policies (SRPT)
* Median and tail latency results

* More workloads

* Cold start analysis

* Overhead analysis



Find me at:

. kkaffes@stanford.edu
Conclusion

Serverless schedulers need to be:
* Load-aware

* Cost-aware

* Locality-aware

Hermod achieves these goals using three key techniques:
v" Early Binding

v Hybrid Load Balancing

v' Processor Sharing
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