Hermod: Principled and Practical
Scheduling for Serverless Functions

Kostis Kaffes, Neeraja J. Yadwadkar, Christos Kozyrakis

Stanford MAST

Serverless Computing is Convenient for Users

Users:

* Define a function

* Specify events as execution triggers

* Pay only for the actual runtime of the function activation

Serverless Computing is Challenging for Providers

Providers need to manage:
* Function Placement

* Scaling

* Runtime Environment

Serverless Function Lifecycle

HTTP
Request

§g kafka

-

(&

\

/ Controller
A :
o

é .
Registry

d

Code

{ Function
N\

»

—>

Executor

~

Pre- ex1st1ng]

New
Executor

C —— N\ (/))

~

/

Workers

Warm
Start

Cold
Start

Serverless Scheduling Goals

Serverless schedulers need to be:

* Load-aware — Avoid excessive queueing

* Cost-aware — Use as few servers as possible
* Locality-aware — Avoid cold starts

Serverless Scheduling Decisions

* When an invocation should be scheduled to a Worker?

nich Worker should handle each invocation?

\"\
Which intra-Worker scheduling policy should be used?

When an invocation should be scheduled to a Worker?¢

Load Balancer f2 £3 f1 || Load Balancer

Worker Worker Worker Worker Worker Worker

@H@ @H@ @H@

(@) Early Binding

@O (@@ [@E
(b)

Late Binding

+ Tasks always ready to execute + Perfect load balancing
-- Imperfect load balancing -- Head-of-line blocking

Where should a function invocation execute?

f1

Load Balancer

— ——

Worker

f1
f1 f1

\@ @)

Worker

\@ O)

4 N
Worker

\@ O)

(a)

Locality-based

f1

Load Balancer

y

4 N
Worker

\@ @)

4 N
Worker

f1 f3
&)@
& J

4 N
Worker

\@ @)

(b)

Random

f3 | Load Balancer
\4.
4 N\ [N\ [N
Worker Worker Worker

(1))

(c)

f1 f4
&)@
. J

\@ @)

Least-Loaded

Which intra-Worker scheduling policy should be used?

* First-Come-First-Serve
* Processor-Sharing

Serverless Scheduling Taxonomy

T/LB/S

T: Type of binding used (early E vs. late L)
LB: LOC - locality-based

LL — least-loaded

R — random
S: intfra-Worker policy

FCFS — First-Come-First-Serve

PS — Processor Sharing

Existing Approaches

Policy ldbmrme | Crdmewae | leesiereme

OpenWhisk | E/LOC/PS X X v
kNative E/R/PS X X v
Sparrow | Late Binding v X X
Hermod |E/Hybrid/PS v v v

11

Exploring the Policy Space using Queueing Simulation

Setup: 4 Workers — 12 cores each

. _ tion time + queueing + scheduling
Metric: 99% Slowdown = ===
99 A) S execution time

Workload = Azure Trace [ATC 2020]
Highly-variable execution times
Highly-skewed invocations
50 functions

Least-Loaded Balancing Dominates

99% Slowdown

10

E/LL/FCFS

1 —#— E /R /FCFS

High variability makes

random balancing suboptimal

| I

—»— E /LOC / FCFS

High skew makes pure
locality-based balancing

suboptimal

/

0.6 0.8
Load

1.0

13

Processor-Sharing in the Workers is Necessary

99% Slowdown

10
E/LL/PS E/LL/FCFS
8_
6' Processor Sharing avoids
worker-side head-of-line

4_ blocking

) X

8. 0.2 0.4 0.6 0.8 1.0

Load

Processor-Sharing in the Workers is Necessary

99% Slowdown
QD@ N & O ©®

10

—¥— E/LL/PS —8— Late Binding

Late Binding also suffers from
head-of-line blocking

&

.0 0.2 0.4 0.6

Load

0.8

1.0

15

Conclusion

The load-aware E/LL/PS policy is optimal

NO

16

E/LL/PS Suffers from Practical Problems

1. Low resource efficiency

Load Balancer

The policy also needs to be cost-aware

E/LL/PS Suffers from Practical Problems

1. Low resource efficiency
2. Increased Cold Starts

The policy also needs to be locality-aware

Solution: Hermod (E / Hybrid / PS)

cost-aware hybrid

load balancing

Controller

f1

66) 60 50 150

(a) Consolidation at low load

Worker
f3 f4

Lo,

Controller

T— f3

()
Worker

f1 f4

Lo,

()
Worker

[olo)

Worker
2 f1

L,

(b) Least-Loaded at high load

Solution: Hermod (E / Hybrid / PS)

f1] Load Balancer
locality-aware

load ba ancing Invoker Invoker Invoker

when cost and
load allow it

D@ (@O [@O

Evaluation
Baselines
* OpenWhisk (E/LOC/PS)

* Late Binding (Sparrow)
* lLeast-Loaded (E/LL/PS)

Testbed: 9 x 12-core servers

Workload: Azure Trace scaled down to 50 functions

How does Hermod improve performance?

80 7 1 . .
70 —-®— Vanilla OpenWhisk

(- ‘ Late Bindi

; Least-Loaded suffers from Least-ll_oalgg]d

8 28 frequent cold-starts at low load — Hermod

o 40/

wn 30

o A Hermod achieves lower
g 20 \ slowdown across all load levels
Q10

0 2 4 6 8 10 12 14

22

How does Hermod behave with different distributions?

Exponential execution time distribution

— 35 =—@=— Vanilla OpenWhisk
=30 ate Binding
O 25| === |east-Loaded
%20 - Hermod

Hermod performs well even in
homogeneous execution time

distributions

23

How does Hermod affect resource consumption?

"

Least-Loaded uses all available
servers even for low loads

—@— \/anilla OpenWhisk
Late Binding

- | east-Loaded

—#— Hermod

A

6 8 10 12 14
RPS

24

More details in the paper

* Simulation of larger setups and more complex policies (SRPT)
* Median and tail latency results

* More workloads

* Cold start analysis

* Overhead analysis

Find me at:

. kkaffes@stanford.edu
Conclusion

Serverless schedulers need to be:
* Load-aware

* Cost-aware

* Locality-aware

Hermod achieves these goals using three key techniques:
v" Early Binding

v Hybrid Load Balancing

v' Processor Sharing

26

