
Method Overloading the Circuit

Christopher S. Meiklejohn
Ph.D. Candidate, Software Engineering, SCS/S3D

Lydia Stark
University of Alaska, Anchorage

Cesare Celozzi, Matt Ranney
DoorDash, Inc.

Heather Miller
Assistant Professor, SCS/S3D CMU

Meiklejohn et al. Method Overloading the Circuit 2

Microservice Architectures are Complex

As of 2021, all 50 companies in the Fortune 50 were hiring for roles that mentioned microservices. [SoCC ‘21]

Microservice architecture is an architectural style where applications are constructed from
services that communicate over the network using RPC and are developed, scaled and deployed independently.

1,000 services
(2021)

2,200 services
>120 for getting ride

(2016)

500 services
>100 involved in core flow

(2022)

Microservice applications are the most common and complex type of distributed application being built today.

Twitter (2017) operates a > 10k node distributed Hadoop cluster.
However, most nodes have the same behavior, running the exact same code.

DoorDash (2022) operates 500 microservices.
Each service provides different functionality, has a different API, and is deployed continuously.

Meiklejohn et al. Method Overloading the Circuit 3

Microservice Application Example
My List

Service and Team

Bookmarks
Service and Team

User Recommendations
Service and Team

API Gateway
Service and Team

What happens if the bookmarks service is
unreachable or producing errors?

Why microservice architectures?
Improves developer productivity (e.g., Fowler
‘14, DoorDash ’20) and application scalability.

Trade-off of technical complexity.
Reduces whole application knowledge but
forces developers to consider partial failure.

What should happen if the bookmarks service
is unreachable or producing errors?

Meiklejohn et al. Method Overloading the Circuit 4

What should, and what does, happen?

Client

API
Gateway

My List Ratings

User
Recs

Global
Recs

Bookmarks

Telemetry

Trending

User
Profiles

Fallbacks
Developers specify alternative
application logic in the event of
dependency failure.

Other resilience techniques:

Retries1

Timeout2

Load shedding3

Circuit breakers4

Fault injection and chaos
engineering used to verify what
should happen does happen.
[Meiklejohn et al. 2021, SoCC ‘21]

Reliability at DoorDash

Meiklejohn et al. Method Overloading the Circuit 5

Fallbacks
When dependencies are unavailable, load alternative content from different services or
use default responses to allow application to degrade gracefully.
(e.g., personalized recommendations become generic recommendations.)

1.

Cluster Orchestration
Support for rolling deploys with replicas of services supported by load balancing.
Combined with single retries (not timeout), lets nodes to hit non-failed replica on retry.
Automatic readiness and liveness checks with auto-scaling and restart policies.

Load Shedding
Short-circuit request at the callee using a predefined error indicating overload.
Typically performed based on the number of outstanding concurrent requests.

Circuit Breakers
Short-circuit request at the caller using a predefined error indicating failure condition.
Typically performed based on the number of observed errors within a specific period.

2.

3.

4.

Why Do Circuit Breakers Matter?

Meiklejohn et al. Method Overloading the Circuit 6

Microservice fault tolerance is more complicated.

Bad deployments of a service.
Number of nodes return error responses (e.g., 500 Internal Server Error) before removal.

1.

Service failures only with certain arguments due to application bug.
Service returns errors when provided with certain arguments by a caller only. (e.g., NPE, etc.)

2.

Dependencies of a given RPC method may be malfunctioning.
Direct dependencies of a service may slow down, timeout, or fail in other ways.

3.

Engineers must also consider:

Circuit breakers are an important part of the resilience strategy at DoorDash.

Why Study Circuit Breakers?

Meiklejohn et al. Method Overloading the Circuit 7

Taxonomy
Understand circuit breaker usage in order to determine if the errors we were experiencing were
specific to our usage of a circuit breaker or inherent in circuit breaker design.

1.

Extremely limited research in academia on circuit breaker design or usage exists.

Circuit breakers often weaken the resilience of the application by disabling unrelated RPCs.

Multiple Case Study Analysis
Identify inverse relationship between abstraction and circuit breaker usage through multiple case
studies, implemented and open-sourced in the Filibuster application corpus. [SoCC ‘21]

2.

Proposed Designs
Propose new designs to address the deviancies in existing circuit breaker designs and discuss how
they might be implemented.

3.

Circuit Breakers: Overview

Meiklejohn et al. Method Overloading the Circuit 8

A BCB LS

Too many errors, short-circuit RPC

RPC

Too many outstanding requests, short-circuit RPC

Circuit Breakers
Interpose on RPCs between services and record
successes/errors to determine if RPC should be allowed.
With on a min threshold of requests and a sliding window,
determine if the num of errors have exceeded a threshold.

Load Shedding
Special case of circuit breakers that use number of
outstanding requests at a given service.

Half-Open

Open

Closed

Circuits begin in the closed state.
When the threshold is exceeded move to the open
state where all RPCs are refused.

Circuits move to the half-open state to determine if
they should move to open if a subset of RPCs succeed.

Transitions

1.

2.

Circuit Breakers: Taxonomy

Meiklejohn et al. Method Overloading the Circuit 9

Transparency (explicit vs. transparent)
Circuit breakers may require that developers integrate them directly into the
application code or inherit them from the libraries or infrastructure they use.

1.

Scope
Circuit breakers may be installed in the network, at the clients of RPC invocations, on
methods that invoke RPCs, or directly at the call site of an invocation in the application.

2.

Sensitivity
How the state of the circuit breaker state (e.g., counters, etc.) is affected.
This is typically inherited from the scope of the circuit breaker, but not always.

3.

From a software engineering perspective, we were concerned with the following properties:

From this study, we discovered a third property:

For a full discussion of these properties, see our paper.

Partitioning and Scope Partitioning

Meiklejohn et al. Method Overloading the Circuit 10

Before refactoring: After refactoring:
@orders.method("create")
def order_creation(...):

try:
res = rpc(auth, "create", [order_id, amount])
return order_id

except Exception as e:
...

@orders.method("update")
def order_modification(...):

res = rpc(auth, "update", [order_id, amount])

@orders.method("delete")
def order_cancellation(order_id : String):

res = rpc(auth, "delete", [order_id])

@orders.method("create")
def order_creation(...):

res = issue_auth_rpc("create", [order_id, amount])

@orders.method("update")
def order_modification(...):

res = issue_auth_rpc("update", [order_id, amount])

@orders.method("delete")
def order_cancellation(order_id : String):

res = issue_auth_rpc("delete", [order_id])

@circuit(expected_exception=RPCException)
def issue_auth_rpc(method, args)

return rpc(auth, method, args)

method-explicit circuit breaker

Partitioning and Scope Partitioning

Meiklejohn et al. Method Overloading the Circuit 11

After refactoring:

Insight #1: Partitioning

To increase sensitivity, developers must
refactor code to partition RPC invocations
that need separate circuit breaking.

@orders.method("create")
def order_creation(...):

res = issue_auth_rpc("create", [order_id, amount])

@orders.method("update")
def order_modification(...):

res = issue_auth_rpc("update", [order_id, amount])

@orders.method("delete")
def order_cancellation(order_id : String):

res = issue_auth_rpc("delete", [order_id])

@circuit(expected_exception=RPCException)
def issue_auth_rpc(method, args)

return rpc(auth, method, args)

After refactoring for circuit breaker sensitivity:
@orders.method("create")
@circuit(expected_exception=RPCException)
def order_creation(...):

try:
res = rpc(auth, "create", [order_id, amount])
return order_id

except Exception as e:
...

@orders.method("update")
@circuit(expected_exception=RPCException)
def order_modification(...):

res = rpc(auth, "update", [order_id, amount])

@orders.method("delete")
@circuit(expected_exception=RPCException)
def order_cancellation(order_id : String):

res = rpc(auth, "delete", [order_id])

Partitioning and Scope Partitioning

Meiklejohn et al. Method Overloading the Circuit 12

Insight #1: Partitioning Insight #2: Scope Partitioning

To increase sensitivity, developers must
refactor code to partition RPC invocations
that need separate circuit breaking.

When partitioning to increase sensitivity,
partitioning must be performed with
respect to the scope of the circuit breaker.

After refactoring for circuit breaker sensitivity:
@orders.method("create")
@circuit(expected_exception=RPCException)
def order_creation(...):

try:
res = rpc(auth, "create", [order_id, amount])
return order_id

except Exception as e:
...

@orders.method("update")
@circuit(expected_exception=RPCException)
def order_modification(...):

res = rpc(auth, "update", [order_id, amount])

@orders.method("delete")
@circuit(expected_exception=RPCException)
def order_cancellation(order_id : String):

res = rpc(auth, "delete", [order_id])

Expanding our Application

Meiklejohn et al. Method Overloading the Circuit 13

Expand our application from only delivery to delivery and takeout:

Multiple (6 = 2 * 3) possible order type parameterizations (showing 3 representative examples):

1a.
@orders.method('takeout/cancel')
def takeout_order_cancellation(oid : String):

res = issue_takeout_auth_delete_rpc([oid])

@circuit(expected_exception=RRPCException)
def issue_takeout_auth_delete_rpc(args):

return rpc(takeout_auth, "delete", args)

@orders.method('takeout/cancel')
def takeout_order_cancellation(oid : String):

res = issue_auth_delete_rpc('takeout/delete', [oid])

@circuit(expected_exception=RPCException)
def issue_auth_delete_rpc(method, args):

return rpc(auth, method, args)

@orders.method("delete")
def order_cancellation(oid : String, type : String):

res = issue_auth_delete_rpc([oid, type])

@circuit(expected_exception=RPCException)
def issue_auth_delete_rpc(args):

return rpc(auth, "delete", args)

1b.

2c.

parametrization by method and invoked service parametrization by method and invoked method

parametrization by args and invoked args (chosen by DoorDash engineers.)

Path- and Context-Sensitivity

Meiklejohn et al. Method Overloading the Circuit 14

Insight #3: Path-sensitivity

Circuit breakers are aware of the RPC’s invocation
path.

@orders.method('takeout/cancel')
def takeout_order_cancellation(oid : String):

res = issue_auth_delete_rpc('takeout/delete', [oid])

@circuit(expected_exception=RPCException)
def issue_auth_delete_rpc(method, args):

return rpc(auth, method, args)

1b. parametrization by method and invoked method
@orders.method("delete")
def order_cancellation(oid : String, type : String):

res = issue_auth_delete_rpc([oid, type])

@circuit(expected_exception=RPCException)
def issue_auth_delete_rpc(args):

return rpc(auth, "delete", args)

2c. parametrization by args and invoked args

Insight #4: Context-sensitivity

Circuit breakers are aware of the invoking RPC’s
arguments.

We must make the circuit breaker sensitive to order type despite the parameterization choice?

What happens if a bug only affects cancellation of takeout orders?

RPC invoking method (with CB) shared for takeout and delivery. All methods shared for takeout and delivery.

Decision Diagrams

Meiklejohn et al. Method Overloading the Circuit 15

Parameterization
of invoking

method name
at Service A.

Callsite-Transparent Application Circuit Breaker
Decision Tree

BA

Transparent Network-level CB
Decision Tree

Transparent Network-level CB
Decision Tree

C

D

Starting Microservice Graph

BA C

DE

Resulting Microservice Graph

Engineers can either choose to
invoke a new service or
extend the existing invoked method through
parameterization.

Application-level CB forces engineers to make one additional
choice for parameterization:
the invoking method’s name or
the invoking method’s arguments.

1. 2.

2.

Parameterization
of invoking

method arguments
at Service A.

Transparent Infrastructure Circuit Breaker
Decision Tree

Parameterization of invoked service name.
(call E -- a modified copy of B -- instead of B)

Parameterization of
existing invoked

method on Service B. Parameterize by
invoked method arguments.

Parameterize by
invoked method name.

1.

(ex. 1a)

(ex. 1b)

(ex. 1c)

(ex. 2a)

(ex. 2b)

(ex. 2c)

Service Path Context

Circuit Breaker Types
(Sensitivities)

Design choices for a single circuit breaker scope.

Parameterization
of invoking

method name
at Service A.

Transparent Network-level CB
Decision Tree

Transparent Network-level CB
Decision Tree

Parameterization
of invoking

method arguments
at Service A.

(ex. 1a)

(ex. 1b)

(ex. 1c)

(ex. 2a)

(ex. 2b)

(ex. 2c)

callsite-ex
p

licit

m
eth

o
d-ex

p
licit

1
 clien

t-ex
p

licit

N
 clien

t-ex
p

licit

callsite-tran
sp

aren
t

Service Path Context

Possible design choices when considering
multiple circuit breaker scopes.

In almost all cases, achieving the correct sensitivity
requires circuit breakers that do not exist yet.

Not meant to be read or understood!

Exacerbated by Microservices

Meiklejohn et al. Method Overloading the Circuit 16

Service A

Service B

Service C

Service D

Service E

Team 1

Team 2

Team 3

Team 4

Team 3 unaware of fork.

Shared circuit breaker at C used
for invocations from E or B.

Problematic if requests originating at E
trigger fault in D.

Path-sensitivity.

Service A

Service B

Service C

Service D

Team 1

Team 2

Team 3

Team 4

Context-sensitivity.
Example: Downstream dependencies impacted by upstream
non-local feature development.

Service D’

Shared circuit breaker at C for
invocations to D or D’.

Canary of D’ for subset of
traffic based on args from A.

Problematic if D’ is returning errors
because of active fault.

Example: Canary release of D, D’, contains a bug only for
certain requests from A.

Without sensitivity: must refactor into 2 RPC invoking methods (method CB) or to use 2 RPC clients (client CB.)

Contributions

Meiklejohn et al. Method Overloading the Circuit 17

For more, read our paper:

Taxonomy
Full discussion of process of identifying and classifying existing CB implemtations.

1.

Case Study #1 and Case Study #2
Including full discussion and implementation in the Filibuster corpus. [SoCC ‘21]

2.

Proposed Implementation
Discussion of implementation strategy for providing path- and context-sensitivity.
Favor path-sensitive compatible app designs; context- only for retrofitting resilience.

4.

Decision Process
Decision diagrams with walkthrough of extending a example application with CBs.

3.

Open Challenges
Discussion of open research challenges based on our survey of circuit breakers and
experience of using them at scale at DoorDash.

5.

Meiklejohn et al. Method Overloading the Circuit 18

Conclusion

Andrea Estrada Yiwen Song Lydia Stark
(Anchorage)

Eunice Chen Haoyang Wu

Rohan Padhye

Matt Ranney

Heather MillerClaire Le Goues Peter Alvaro
(UCSC)

Students

PhD Committee

DoorDash

Advisor

Cesare Celozzi

Learn more about
microservice resilience
http://filibuster.cloud

Microservice architectures solve a socio-technical problem
designed to facilitate organization growth and come with
a new set of fault tolerance challenges.

Application developers increasingly rely on circuit breakers
as a fault tolerance mechanism against bad deployments,
buggy code, and service unavailability.

However, the current designs of circuit breakers pose
problems with the way application developers want to write
application code.

http://filibuster.cloud/

