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Background

* Datacenters (DCs) account for 1% of worldwide electricity use in
2018, and the demand for DCs keeps increasing

Operational cost Carbon emission

* Green DCs is one way to increase the sustainability of DCs



Motivation

Managing green DCs to maximize the benefit is complex and
challenging: -
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Our Solution: GreenDRL

* A deep reinforcement learning (RL) based management
system that manages

* Can be systematically optimized for performance via training
* Thus, reduces the effort to design handcrafted heuristics

* Does not depend on predictions of the future



Problem Description

Consider a green DC:

= Two types of power source:
= on-site green energy (free of cost) generation
= brown energy from power grid
= Hybrid cooling system:
= free cooling unit
= Air Conditioner
= Compute-intensive workload consists of two types of jobs:
= deferrable job: can be delayed by x hours
= nondeferrable job: should execute as soon as possible

= Servers: can be put into inactive low power state (e.g., ACPI S3)



Objective
. Maintaining internal temperature More important

. Minimize waiting times for nondeferrable jobs

. Minimize delaying deferrable jobs for longer than the
threshold delay time period

. Minimize brown energy cost

Less important



RL Background and Design Considerations
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GreenDRL Desigh: Two Components Partition

Make key decisions Heuristic-based job scheduling
+ actuate control decisions.
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GreenDRL: Control Agent (CA)
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CAs neural network is relatively structurally independent
of the problem size, e.g., # of servers, # of cooling
operations.
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GreenDRL: Control Module(CM)

 Mapping actions and actuate DC operations, e.g.,

“Set free cooling at
50% fan speed”

“keep N server active”
* Heuristic-based job scheduling:

* Respect CA’s decision

* Prioritize nondeferrable jobs

* Packing active servers to increase utilization

The workings of CM is part of CAs environment:
* any well-known job scheduling heuristic can be used



GreenDRL Training: The Intuition
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Increase the probability of “Good”
trajectory by updating 6y in the neural
network (gradient ascent update)

Interact with a DC simulator to
generate trajectories with current

policy g,

More customized implementation to make training
stable and effective in the paper



Evaluation: Build a Green DC Simulator

e Build a simulator for Parasol, including:

* Server power model .
* Cooling thermal models for both free cooling and AC

Challenges: During training, the RL may explore abnormal
situations that are never seen in a normal DC, e.g.,
* Turn on AC when inside temperature is just 5°C

We study physical thermal theory.
Define models with reasonable behaviors even in less-seen situation



Evaluation

Workload trace Google and Alibaba
Environmental trace Parasol traces with different weather patterns
Servers # 32
Time slot duration 5 min
Deferrable load vs nondeferrable 75% v.s. 25%
Deferrable deadline 12 hours

Baselines:

FIFO: Always keep just-enough servers to execute the workload + Simulation of a
commercial cooling controller

LP: MILP with perfect future knowledge (adapts GreenSwitch [ASPLOS’13]) + adapted
CoolAir[ASPLOS’15] for cooling control.
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s esults

]
* GreenDRL jointly managing cooling, server power
and workload leads to benefit

> * GreenDRL can learn basic principles:
= Shifting deferrable workload
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More Results in the Paper
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Conclusion

* We study the use of deep RL to jointly manage several important
controllable aspects of a green DC operation

* GreenDRL combines a deep RL agent and simple heuristics

e Simulation results using historical data collected from Parasol, an
experimental green DC shows:

* GreenDRL can successfully learns important management principles
* Outperforms two baseline policies



Thank youl!



