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Background
• Datacenters (DCs) account for 1% of worldwide electricity use in 

2018, and the demand for DCs keeps increasing

• Green DCs is one way to increase the sustainability of DCs
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Carbon emissionOperational cost



Motivation
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Managing green DCs to maximize the benefit is complex and 
challenging:

Minimize brown energy Use green energy 
efficiently

Meet workload SLA Efficient cooling control

Multiple aspects, and complex 
tradeoff space

8am 1pm 18pm

Outside temperature (℃)

Solar energy generation (kW)

More workload execution to use green usage J

We propose to use deep reinforcement learning technique to jointly 
manage several important aspects of the DC operation

More cooling energy need L



Our Solution: GreenDRL
• A deep reinforcement learning (RL) based management 

system that jointly manages 
• server energy
• cooling control
• workload scheduling 

• Can be systematically optimized for performance via training 
• Thus, reduces the effort to design handcrafted heuristics

• Does not depend on predictions of the future
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Problem Description
Consider a green DC:

§ Two types of power source:  
§ on-site green energy (free of cost) generation
§ brown energy from power grid 

§ Hybrid cooling system:  
§ free cooling unit 
§ Air Conditioner

§ Compute-intensive workload consists of two types of jobs:
§ deferrable job: can be delayed by x hours
§ nondeferrable job: should execute as soon as possible

§ Servers: can be put into inactive low power state (e.g., ACPI S3)
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Objective 
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1. Maintaining internal temperature

2. Minimize waiting times for nondeferrable jobs

3. Minimize delaying deferrable jobs for longer than the 
threshold delay time period 

4. Minimize brown energy cost

More important

Less important



RL agent with  
policy 

Environment

Action  

State 

Reward  

RL Background and Design Considerations
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The goal: learn a policy , 𝜋! 𝑠" , 𝑎" , that 
maximizes the expected cumulative reward 

RL  

Many control decisions and extremely 
large learning space

Scalable and adaptable as the DC 
builds out or change

𝑃𝑟𝑜𝑏"(𝑎#|𝑠#)

A sample



Job Scheduling  
Control 
Module 

Green  
DC 

Control Agent

GreenDRL

Reward

State Information

Cooling control 

DC  monitoring 

Policy Network

Server management 

GreenDRL Design: Two Components Partition
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Make key decisions Heuristic-based job scheduling 
+ actuate control decisions.

GreenDRL Overview



CM 

Control Agent

Policy Network

GreenDRL: Control Agent (CA)
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o Green energy in previous time slot
o Current in and outside temperatures
o Cluster load
o …

𝜋! 𝑎"|𝑠" = Pr! 𝑎" 𝑠" :

CA’s neural network is relatively structurally independent 
of the problem size, e.g., # of servers, # of cooling 
operations.

Server allocation

Cooling 

Deferrable Job 
dispatch cap

~𝒩𝑜𝑟𝑚𝑎𝑙!

𝑅𝑒𝑤𝑎𝑟𝑑" = 𝑓#$%&'((𝑃𝑒𝑛𝑎𝑙𝑡𝑖𝑒𝑠" , 𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑠𝑡")

Output a sample, at



GreenDRL: Control Module(CM)

• Mapping actions and actuate DC operations, e.g.,

• Heuristic-based job scheduling:
• Respect CA’s decision
• Prioritize nondeferrable jobs
• Packing active servers to increase utilization
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“keep 𝑁 server active”“Set free cooling at 
50% fan speed”

The workings of CM is part of CA’s environment:
• any well-known job scheduling heuristic can be used



GreenDRL Training: The Intuition
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.
$%!

#
𝑟$ = +10

.
$%!

#
𝑟$ = 0

.
$%!

#
𝑟$ = − 6

𝜋<%

Interact with a DC simulator to 
generate trajectories with current 
policy 𝜋!!

𝜋!%&'

Increase the probability of “Good” 
trajectory by updating  𝜃5 in the neural 
network (gradient ascent update)

More customized implementation to make training 
stable and effective in the paper



Evaluation: Build a Green DC Simulator
• Build a simulator for Parasol, including:

• Server power model
• Cooling thermal models for both free cooling and AC
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Parasol testbed

Challenges: During training, the RL may explore abnormal 
situations that are never seen in a normal DC, e.g.,
• Turn on AC when inside temperature is just 5℃

We study physical thermal theory.
Define models with reasonable behaviors even in less-seen situation



Evaluation
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Overall evaluation setup
Workload trace Google and Alibaba

Environmental trace Parasol traces with different weather patterns

Servers # 32  

Time slot duration 5 min

Deferrable load vs nondeferrable 75% v.s. 25%

Deferrable deadline 12 hours

Baselines:
FIFO: Always keep just-enough servers to execute the workload + Simulation of a 

commercial cooling controller 
LP: MILP with perfect future knowledge (adapts GreenSwitch [ASPLOS’13]) + adapted 

CoolAir[ASPLOS’15] for cooling control. 



Results
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• GreenDRL jointly managing cooling, server power 
and workload leads to benefit

• GreenDRL can learn basic principles:
§ Shifting deferrable workload
§ Avoid missing deadlines, maintain 

temperatures efficiently (results in paper)

A HighSolar-HighTemperature day

Energy Saving:
• 54% compared to FIFO
• 24% compared to LP



More Results in the Paper
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And More:
• Scalability
• Impact of different weights in the reward function
• Sensitivity to
• cluster load
• defer vs nondeferrable ratio
• deferrable workload delay tolerance

• Can learn coordinated cooling and server allocation decisions 
• 18% energy saving over a year compared to FIFO



Conclusion
• We study the use of deep RL to jointly manage several important 

controllable aspects of a green DC operation

• GreenDRL combines  a deep RL agent and simple heuristics

• Simulation results using historical data collected from Parasol, an 
experimental green DC shows:
• GreenDRL can successfully learns important management principles
• Outperforms two baseline policies
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Thank you!
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