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d Payment Channel Network (PCN): a leading solution to scale blockchain
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(b) A top example of PCN.

(a) How the payment channel works.
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1 Measurement #1: Distribution Analysis of PCN Transactions
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Insight #1. The distribution of transaction amounts is highly concentrated and most
values are distributed within a small range. This leads to a more traceable long-term
throughput. 4
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d Measurement #2: Analysis of Network Topology
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Insight #2. The degree distribution of PCN Is similar to scale-free networks,
suggesting that the key to scheduling transactions is the control of nodes with high

degrees.
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1 Proposed Solution: PLAC, a deep reinforcement learning-based (DRL)
transaction scheduling algorithm
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2 Action: the maximum transaction amount allowed
through each channel

® Reward: the number of successful transactions at
current epoch 6

Using the scale-free
nature of PCNs, PLAC
Is used to control the
router nodes

Implemented with
deep neural networ

@© State:
« topological structure of router nodes
* Incoming transactions queued in router nodes
« past channel balances of a fixed window
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d Network Design of PLAC: a GNN-based model for graph-structured data
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 Training methodology of PLAC

> We build PLAC with the famous actor-critic
architecture.

» The actor network takes the state as input and
outputs the action.

» The critic network is used to approximate the
long-term reward function and provide
guidance for actor-network’s update;

@ Critic network update:
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@ Actor network update:

S=St,a=Tg (St)]
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 Training methodology of PLAC

» To stabilize training, PLAC implements
additional models for both actor and critic
networks.

> The target value 79, (s, a;) for critic
network’s update 1s rewritten as:

re+y-E [Qn’(5t+1rn9’(5t+1))]
» The target network is updated using soft update:
0' =160+ (1—1)0,
n=m+ (1 —-1)n,
where 7 < 1.
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 Evaluation Setup
» Dataset:
« Topology: Ripple on July 4, 2021; Lightning on December 30, 2020
 Transaction
» Router node selection: top 40 nodes with the largest degrees
 Transaction generation: Sample from historical transactions
 Baselines:
« Waterfilling
 Flash
 Shortest Path First (SPF)
 DRL-FC

 Evaluation metric: the percentage of successful payments over all generated payment
demands within a given time
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d Evaluation Results
« Convergence Behavior

205 =
< =041
200.4 e
2 2023
ﬁ 0.3 ﬁ '
302} g 02
'Té 0.1 Té 0.1
3 0.04 | | | | 3004 | | | |
0 50 100 150 200 0 50 100 150 200
Training Episode Training Episode
(a) Ripple (b) Lightning
4 )

For Ripple and Lightning, PLAC achieves the normalized throughputs of about 45.9% and 47.6%,
respectively. By contrast, DRL-FC only achieves the normalized throughputs of about 14.4% and 14.8%

. on Ripple and Lightning, respectively. )
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1 Evaluation Results

« Performance with Different Evaluation Settings: PLAC improves the throughput by 6.6%—
34.9% compared with the baselines.
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Background Measurement | Algorithm Design Experiments

J Conclusions:

A It is important to consider the long-term effect of transactions on the
channel balances when scheduling PCN transactions.

1 The scale-free nature of PCN allows us to focus on nodes with high
degrees when scheduling transactions.

1 By leveraging DRL and GNN, PLAC can learn a scheduling policy that
leads to higher long-term throughput than baselines.
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