

ACM Symposium on Cloud Computing

Characterizing and Orchestrating VM Reservation in Geo-distributed Clouds to Improve the Resource Efficiency

Jiuchen Shi, Kaihua Fu, Quan Chen, Changpeng Yang, Pengfei Huang, Mosong Zhou, Jieru Zhao, Chen Chen, Minyi Guo

Shanghai Jiao Tong University, Huawei Cloud

Large Tenants and Resource Reservation

4 month data, about 85k tenants top 20 dominates 54.5% of resource Obvious head effect

Bursty Resource usage can be **7.5X Unplanned** load burst Service of **Reserved VMs** (AWS, Azure, Google, Huawei)

Geo-distributed Clouds and Reservation

Cloud Regions, **Datacenter**, **Resource Pools**, VM types, **Tenant-specified reservation**

Geo-distributed Trace: 2021, 4 month, top 20 tenants, 17 regions, sample every 10 mins

Resource Reservation Status

Tenant-specified resource reservation

Utilization rate mainly distributed in 20%-50%, regions differ from each other

Total Avg. utilization rate = 32.3%

Average resource utilization rate

Note:

Region Set 1: r1-r7 *Region Set 2*: r8-r9 *Region Set 3*: r10-r17

Distribution of resource reservation rate

"Tenant-specified reservation" causes huge resource waste

Resource Usage Distribution

17 regions, 7 VM types, different cost coefficients

3 region set, regions in same *Region set* are Geographically Close, 7 VM types can exchange

Regions: Only 30.2% and 14.0% of resources distributed in low-cost. **VM types:** Only 19.6% of resource distributed in low-cost.

Cost coefficients of regions and VM types

Resource usage distribution of regions

Resource usage distribution of VM types

"Tenant-specified reservation" not tends to low-cost region/VM type

What can we learn from current reservation status?

- Low utilization rate, on-demand reservation can reduce waste;
- > Not aware of region/VM type costs, potential to lead to low cost;
- Define tenant "Acceptable Spatial Ranges" to ensure SLO for tenants
- Acceptable Spatial Ranges:
 - reserved resource can **exchange** within some regions/VM types;

decide **positions** and **resource amount** in corresponding ranges.

"On-demand + low-cost reservation" needs to explore "temporal and spatial patterns" of large tenants

Diurnal usage pattern:

day and night mode in short and long term Time series prediction methods: LSTM/ARIMA

Persistent usage pattern:

stable usage in pattern in long term, (1) stable;(2)ladder;(3)oblique-line; average values, linear regression analysis methods.

Predictable patterns use corresponding prediction methods

Bursty usage pattern:

Diurnal pattern in normal time, existing bursty resource usage; Bursty amount can be 3X-7X; Bursty duration can be minutes, hours, and days; Online schedule and compensate for bursty time

Irregular usage pattern:

random in short and long term; Unpredictable, online schedule and compensate.

Unpredictable patterns rely on online schedule and compensate

Using a single major region/VM type:

Focus on its temporal patterns for resource usage prediction.

Using multiple regions/VM types with stable usage division:

Stable division and similar patterns between regions/VM types; "predicted temporal usage × stable division" to predict usage on regions/VM types.

Mainly consider temporal patterns for prediction and reservation

Using multiple regions/VM types with dynamic division:

Dynamic division and different patterns between regions/VM types; Combine tenants "Acceptable spatial ranges", different from temporal patterns.

Multiple regions in dynamic mode

Multiple VM types in dynamic mode

Breakdown of dynamic regions

Breakdown of dynamic VM types

Prediction and reservation on tenants "Acceptable spatial ranges"

Potentials to Improve Resource Reservation Efficiency

Temporal potential:

Diurnal tenants have complementary usage, temporal peak shaving reduces reservation; The example can reduce 8.4% of resource reservation.

Spatial potential:

Tenants on different spatial (region/VM type) have complementary usage; Further reduce resource reservation, the example can reduce 13.2%.

Temporal Potential of Peak Shaving (tenant1 and tenant2 on region r4 VM type v5)

Spatial Potential of Peak Shaving (tenant1 on *r14 v5* & tenant2 on *r10 v1*)

Temporal + Spatial peak shaving can reduce resource reservation

What can we learn from temporal and spatial patterns?

- Predictable tenants needs corresponding prediction methods;
- Unpredictable tenants needs online schedule and compensate;
- > Tenants have obvious spatial patterns:
 - (1) different usage patterns on regions/VM types;
 - (2) dynamic usage division on different regions/VM types.
- Predict/Reserve on tenants "Acceptable spatial ranges" .
- > Temporal and Spatial potentials of peak shaving.

ROS: (1) Prediction; (2) Orchestration; (3) Schedule and Compensation

System Overview

ROS: Resource orchestration and VM scheduling policy

- > Load Pattern Predictor: identify patterns of tenants, and predict resource usage
- > Cross-region Resource Orchestrator: Orchestrate resource reservation to optimize the total cost
- > Bursty-aware Scheduler: Scheduling VMs, and compensating for bursty with cost-minimized rules

Cross-region Resource Orchestration

Optimization model for orchestration

Note: resource type: one VM type on one region

- Input: Predicted resource usage of tenants
- > Output: orchestrate matrix *Ratio, reserved lines* of regions
- Peak shaving between tenants and cost coefficients of resource types

Evaluation of ROS

Evaluation Setup

Trace dataset:

> VM requests of large tenants during 2021.04-07

Spatial ranges:

17 regions divide into 3 region sets based on geographical positions

- Region Set 1 : 7 regions
- Region Set 2: 2 regions
- *Region Set 3* : 8 regions

Typical VM types :

- ▶ v1, v2, v3, v4, v5, v6, v7
- Tenant workloads can be switched inside the 7 VM types

Baselines:

- Tenant-specified reservation
- Geo-distributed capacity planning (Narayanan et al.)

Reducing the Deployment Cost

Compared with "Tenant-specified" strategy:

ROS can reduce 75.4% of deployment cost and 60.1% of resource reservation.

Compared with "Geo-distributed capacity planning":

ROS can reduce 24.7% of deployment cost and 12.2% of resource reservation.

Overall normalized cost and reserved resources

"Low-cost regions/VM types" and "Complementary patterns"

Lessons Learned

- Tenants do not understand their resource demand, prediction and lowcost region/VM type advices can reduce cost and improve utilization;
- It is better to consider the resource reservation from the cloud provider side, which can orchestrate multiple tenants together ;
- Tenants accept some low-cost regions, so cloud providers can build DCs on them, and improve utilization through adaptive orchestrator;
- Since tenants have tendency and tolerance to VM types, cloud providers can provide VM types accordingly to further improve resource efficiency

