Analysis of and Optimization for Write-dominated Hybrid Storage Nodes in Cloud

Shuyang Liu¹, Shucheng Wang¹, <u>Qiang Cao</u>¹, Ziyi Lu¹, Hong Jiang²,

Jie Yao¹, Yuanyuan Dong³ and Puyuan Yang³

*Huazhong University of Science and Technology

UT Arlington

Alibaba

Outline

✓ Background

✓ Trace Analysis
 ✓ Design of SWR
 ✓ Evaluation
 ✓ Conclusion

Hybrid Storage

- Combine SSD and HDD to maximize performance and capacity while minimizing cost
 SSD: high GB/s(0.5-3), low latency(us), high \$/GB(0.5-2.6)
 HDD: low GB/s(0.2), high latency(ms), low \$/GB(0.2-0.45)
- SSD as write buffer (SSD Write Back, SWB mode)
 (1) First write incoming data into SSD
 (2) Then fluch them into HDD in the background
 - (2) Then flush them into HDD in the background

Chunk Server

Write-dominated Storage Nodes

- WSNs: ChunkServers in Pangu experience a writedominant workload behavior.
- Feature:

77%-99% of requests are writes.

The amount of data written is much larger than data read.

- Reason:
 - Frontend applications with their own cache layers need rapidly flush all writes into Pangu and reserve their local storage for hot data.

Pangu provides a unified persisent platform.

Outline

✓ Background
 ✓ Trace Analysis
 ✓ Design of SWR
 ✓ Evaluation
 ✓ Conclusion

Trace Analysis Summary

Problems according to trace analysis on Pangu production traces

SSD overuse

- Long-tail write latency
- Low utilization of HDD

Workload Traces

- Three Business Zones: A(Cloud Computing), B(Cloud Storage), C(Structured Storage).
- Nodes: A1, A2, B, C1, C2
- Time duration: 0.5-22hour
- Number of requests: 28.5-66.9 millions
- SSD ratio: 1 Low(<10%), 2 Mid(10%-33%), 2 High(>33%)
- Write request ratio: 77.2%-99.3%
- Average IO interval: 62us-2ms
- Average request size: 4.1-177 KB

Trace Record: Example

- TimeStamp: 2019-01-24 11:20:36.158678 (us)
- Operation: SSDAppend
- ChunkId: 81591493722114_3405_1
- SATADiskld: -1
- SSDDiskId: 1
- Offset: 56852480 (byte)
- Length: 16384 (byte)
- Waiting delay: 76 (us)
- IO delay: 213 (us)
- QueueSize: 1

Load Behaviors across Chunkservers

- Load balancing across ChunkServers.
- Load Intensity varying over time

(a) A1

Load Behaviors across Disks within Chunkservers

load balancing across internal disks

Operation type and Proportion

Problem 1: SSD overuse

• The amount of data written to/read from SSD/HDD in 24 hours.

	A 1	A2	В	C1	C2
SSD-writes (GB)	138	575	3071	820	1027
HDD-writes (GB)	0.1	3.7	555	384	355
SSD-reads(GB)	3.1	1.3	0.2	201	2.4
HDD-reads(GB)	0.3	12.3	0.2	33.6	7.2

- Calculating an SSD's lifespan in B node
 500GB, 300TBW(Terabyte written), 3TB (DWPD)
 Lifespan=300TB/3TB/30=3.3month
- SSDs wear out quickly in the write-dominated behavior
- Limit DWPD but increase the number of SSDs

Problem 2: Long Tail Latency

• Long tail latencies appear in different business zones and write operations

(a) CDF of IO delays of external SSD-writes

(b) CDF of IO delays of internal SSD-writes

(c) CDF of IO delays of external HDD-writes

(d) CDF of waiting delays of external SSD-writes

(e) CDF of waiting delays of internal SSD-writes

(f) CDF of waiting delays of external HDD-writes

Average/Peak Latency

- External SSD-write: Peak latency is 100-300x larger than average latency.
- Internal SSD-write: Peak latency is 90-2000x larger than average latency.

Node type	External	Internal	External	
	SSD-write	SSD-write	HDD-write	
A1	0.8/113.0	0.09/39.5	0.3/0.4	
A2	0.3/94.1	0.1/9.2	19.2/31.0	
B	0.1/31.8	0.05/14.4	1.3/415.7	
C1	0.1/25.3	0.04/6.7	4.3/613.3	
C2	1.0/302.0	0.09/184.1	6.9/774.8	

Why is there a long tail delay?

Queue Blockage

- When SSD queue length reaches 2, 90th waiting time is 1000x larger than that without queuing, and average waiting time is 100x.
- Outstanding requests can cause long waiting time.

(a) The 90th-percentile waiting delay.

(b) The average waiting delay.

What causes queue blockage?

Blockage Causes

- The reasons behind queue blockage:
 - Large IO
 - Garbage collection

(a) CDF of size of queue-head requests causing queue blockage.

(b) CDF of IO delay of queue-head requests causing queue blockage.

Problem 3: Low Utilization of HDD

	A 1	A2	B	<i>C</i> 1	C2
SSD-writes(GB)	138	575	3071	820	1027
HDD-writes(GB)	0.1	3.7	555	384	355
SSD-reads(GB)	3.1	1.3	0.2	201	2.4
HDD-reads(GB)	0.3	12.3	0.2	33.6	7.2

- In A1, the amount of data written by SSDwrite is 1380x larger than HDD-write.
- The HDD utilization in A1 is far less than
 0.1% on average, while the maximum is 14.3%.

Outline

✓ Background
 ✓ Trace Analysis
 ✓ Design of SWR
 ✓ Evaluation
 ✓ Conclusion

Architecture Of SWR

- SSD Write Redirect (SWR), a runtime IO scheduling mechanism for WSNs.
- Relieve SSD write pressure by leveraging HDDs while ensuring QoS

Key Parameters

Idea: redirects large SSD-writes to an idle HDD

(1) S: When a request's size exceeds S, it will be redirected.

(2) *Smax*: Initial value of S.

(3) L: When SSD queue length exceeds L, S will be decreased.

(4) *p*: SWR gradually decreases the size threshold S with a fixed step value p.

Redirecting Strategy

```
Set S = S_{max}
for request i in the write queue:
       if OP<sub>i</sub> == HDD-write:
               put i in HDD queue
       else
               if L_{SSD(t)} > L:
                       S = S - p^*S_{max}
               if L_{HDD(t)} == 0 and Size_i > S:
                       put i in SSD queue
               else
                       put i in HDD queue
```

Logging HDD-Writes

Using DIRECT_IO to accelerate the data persistence process.

Outline

✓ Background
 ✓ Trace Analysis
 ✓ Design of SWR
 ✓ Evaluation

✓ Conclusion

Experiment Setup

- Two types of SSDs:
 - A1, A2: a 256GB Intel 600p SATA with 0.6 GB/s peak writes
 - B, C1, C2: a 256GB Samsung 960 EVO NVMe-SSD with 1.1GB/s peak writes

HDD: 4TB Seagate ST4000DM005 HDD with 180 MB/s peak write

Trace Replaying on the Test Platform

- Trace: 1 SSD and 1 HDD; 1 hour.
- Average write latency per minute

Parameters Selection

- Smax: 99th-percentile block size of SSD-writes
 - The redirected writes should be tiny in number but large in request size.
 - Large IO requests blocking the queue typically account for only 1.1% of all requests.
- L: 6 for A1, 5 for A2, 30 for *B*, 40 for C1 and 57 for C2
- p: proportion to S , p = {0, 1/8, 1/4, 1/2,1}

SSD-write Reduction

• SWR effectively reduces the amount data written to SSD, by 70% in *B* and about 45% in the other four nodes.

- *p* has no effect on the write reduction.
 - Only effective for the rare burst cases triggering the adjustment of S.

SSD-write Reduction

 By redirecting less than 2% write requests from SSDs to HDDs, SWR is able to reduce 44%-70% of the data written to SSD

	A 1	A2	B	<i>C</i> 1	C2
SSD data written with SWB(GB)	7.3	24.1	126	11.1	14
SSD data written with SWR(GB)	2.5	13.4	37.8	6.2	7.7
Redirected requests(%)	1.8	1.0	0.7	2.0	2.0

SWR may indirectly increases the SSD lifetime by up to 70%.

Average Write Latency

- SWR reduces average latency by:
 - External SSD-Writes: -10%(B) ~ +13%(A2)
 - Internal SSD-Writes: +52%(A1), +11%(A2), +19%(B)
 - External HDD-Writes: -95%~-70%(B)

99th Write Latency

- SWR reduces 99th latency by:
 - External SSD-Writes: + 12%(C1)~ +47%(A2)
 - Internal SSD-Writes: + 13%(C2) ~ +79%(A1,B)
 - External HDD-Writes: -169%~-130%(B),-50%~-9%(C1,C2)

0 0

HDD Competition

 Reason for an increase in External HDD-Writes average 99th latency:

HDD competition between external HDD-writes and redirected SSD-writes

- Can be alleviated by forwarding HDD-writes to the remaining tens of HDDs.
- The avg. and 99th write latency of External HDD-Writes of SWR scheduling upon two HDDs in node *B*.

Latencies of Redirected Writes

• In the worst case, the average latency of 0.7% writes in *B* can increase from 0.94 ms with SWB to 7.29 ms with SWR(lower than SLA(50ms at the average))

SWR reduces of both data written to SSDs and tail-latency at the expense of a tiny percentage of writes(up to 2%).

Outline

✓ Background
 ✓ Trace Analysis
 ✓ Design of SWR
 ✓ Evaluation

✓ Conclusion

Conclusion

- Some hybrid storage nodes in Pangu have writedominated workload behaviors.
- Current request serve mode in such nodes leads to SSD overuse, long-tail latency, and HDD low-utilization.
- Redirecting large SSD write requests to HDDs and dynamically optimize for small and intensive burst requests.

Thank you ! Questions ?