Coupling Decentralized Key-Value Stores
with Erasure Coding

Liangfeng Cheng?, Yuchong Hu?, Patrick P. C. Lee?

'Huazhong University of Science and Technology
°The Chinese University of Hong Kong

SoCC 2019

Introduction

» Decentralized key-value (KV) stores are widely deployed

* Map each KV object deterministically to a node that stores the object via
hashing in a decentralized manner (i.e., no centralized lookups)

* e.g., Dynamo, Cassandra, Memcached

» Requirements
« Availability: data remains accessible under failures
« Scalability: nodes can be added or removed dynamically

Erasure Coding

» Replication is traditionally adopted for availability
* e.g., Dynamo, Cassandra
« Drawback: high redundancy overhead

» Erasure coding Is a promising low-cost redundancy technique
« Minimum data redundancy via “data encoding”
« Higher reliability with same storage redundancy than replication

* e.g., Azure reduces redundancy from 3x (replication) to 1.33x (erasure
coding) - PBs saving

» How to apply erasure coding in decentralized KV stores?

Erasure Coding

» Divide file data to k equal-size data chunks

» Encode k data chunks to n-k equal-size parity chunks

» Distribute the n erasure-coded chunks (stripe) to n nodes

» Fault-tolerance: any k out of n chunks can recover file data

Nodes
Al (. A]
: O
A S o > [C
File divide B encode ——
C A+C | . [A+C
D B+D B+D
A+D | . (. [A+D)
B+C+D B+C+D

(n, k) = (4, 2)

Erasure Coding

» Two coding approaches
« Self-coding: divides an object into data chunks
« Cross-coding: combines multiple objects into a data chunk

» Cross-coding is more appropriate for decentralized KV stores

 Suitable for small objects
* e.g., small objects dominate in practical KV workloads [Sigmetrics’12]

« Direct access to objects

Scalability

» Scaling Is a frequent operation for storage elasticity
« Scale-out (add nodes) and scale-in (remove nodes)

» Consistent hashing
« Efficient, deterministic object-to-node mapping scheme
« A node is mapped to multiple virtual nodes on a hash ring for load balancing

Scalability Challenges

» Replication / self-coding for consistent hashing
* Replicas / coded chunks are stored after first node in clockwise direction

» Cross-coding + consistent hashing?
« Parity updates
* Impaired degraded reads

Abldd
w4 &

QO ([T

parity | n, data,

-o0Q [—~|MD

data,

Challenge 1

parity

@mhg

P

fgg i
g9

Add N, >

» Data chunk updates - parity chunk update

O

data,’

D

—

data,’

parity’

» Frequent scaling - huge amount of data transfers (scaling traffic)

Challenge 2

N1
fail - — .
alblclig >| Read to d fails until d is migrated
1dlh N,
_ fail » | Degraded read to d doesn’t work if
parity | uccess | his migrated away from N,

» Coordinating object migration and parity updates is challenging
due to changes of multiple chunks

» Degraded reads are impaired if objects are in middle of migration

9

Contributions

» New erasure coding model: FragEC
* Fragmented chunks = no parity updates

» Consistent hashing on multiple hash rings
 Efficient degraded reads

» Fragmented node-repair for fast recovery

» ECHash prototype built on memcached
« Scaling throughput: 8.3x (local) and 5.2x (AWS)
« Degraded read latency reduction: 81.1% (local) and 89.0% (AWS)

10

Insight

» A coding unit is much smaller than a chunk
* e.g., coding unit size ~ 1 byte; chunk size ~ 4 KiB
« Coding units at the same offset are encoded together in erasure coding

Coding units at the same
1 offset are encoded together

' Coding unit

n chunks of a stripe

“Repair pipelining for erasure-coded storage”, USENIX ATC 2017 1

—\
|
e

b] f

— D=
el iLel
[pr— [pr—
@
e — — ——

data; data, parity

» Allow mapping a data chunk to multiple nodes
« Each data chunk is fragmented to sub-chunks

» Decoupling tight chunk-to-node mappings = no parity updates

12

p———& —

|| L. {o0.is. icp

I_ 64-bit bucket
— ==

Key

Object Index

» OIRList records how each data chunk is formed by objects, which

| [_omuist NG SGy G ™ Value,
|| I Value,
| I
_________ |
Chunk Index Data Chunk
Chunk J'EII'_ ________ Parity
] Stripe Metadata ! Object Key
stripe 1D | i Coded
I | Infomation
| I
Stripe Index Parity Chunk

OIRLIist lists all object references
and offsets in each data chunk

|

can reside in different nodes

Scaling

» Traverse Object Index to Object Index
identify the objects to be 2
migrated b
C/' $
» Keep OIRLIst unchanged Chunk Index L
(I.e., object organization in one 2l BIA 1T

PP —

data chunk data
migration

each data chunk unchanged)
- No parity updates %

14

Multiple Hash Rings

[a[«H b ~Hc]H

3)

py E5 DG G,

Chunk Index

()

I

Stripe Index

Jl Stripe metadata I‘ I @
| Object Index

@)

data,

()

L 4
data,

(4)

(4)

(3)

pa

rity

Hash Ring 1

Object Index

Hash Ring 2

» Distribute a stripe across n hash rings
* Preserve consistent hashing design in each hash ring

()

(s

Object Index

Hash Ring 3

» Stage node additions/removals to at most n-k chunk updates
—> object availablility via degraded reads

15

Node Repair

» Issue: How to repair a failed node with only sub-chunks?
« Decoding whole chunks is inefficient

» Fragment-repair: perform repair at a sub-chunk level

a1 | | 11 a1 || b, || &
ar|lb>1|C Downloads: 3 Cs Downloads:
2 2 ' 2 :

777 2 data.z: bla b21 b3, b4 . 7/ . b2 . dataz: b2’ b3
2 b datay: cy, C,, C b datay: c,

7 /) 3 ¥1r %21 ~3 D 3 .
— C3 parity Jq. -1 C3} , parity

= b4 34| | by Reduce
data; data, datas parity data; data, data; parity repair traffic

Chunk-repair Fragment-repair

16

» Built on memcached

* In-memory KV storage
« 3,600 SLoC in C/C++

» Intel ISA-L for coding

» Limitations:
« Consistency
« Degraded writes

* Metadata management in
Proxy

ECHash

hash ring

hash ring

hash ring

— — T —
(== - (=
buffer| | buffer buffer U r—L_—LEilT-l_-l
<::>| proxy backup | _:__I
TIL| proxy e
database @
t.:lien;

17

Evaluation

> Testbeds

* Local: Multiple 8-core machines over 10 GbE

 Cloud: 45 Memcached instances for nodes + Amazon EC2 instances for
proxy and persistent database

» Workloads
« Modified YCSB workloads with different object sizes and read-write ratios

» Comparisons:
 ccMemcached: existing cross-coding design (e.g., Cocytus [FAST 16])

* Preserve I/O performance compared to vanilla Memcached (no coding)
« See results in paper

18

Scaling Throughput in AWS

—~407

= Bl ccMemcached [[] ECHash

S30{]]

3 0 - N om - e - Hlmelre -
< 207]

(@)

S

£ 101

|_
e e T
T NP RS N DB RS N D AN DB N S
A AU ICHC IR

Coding Schemes

Scale-out: (n, k, s), where n — k =2 and s = number of nodes added

» ECHash increases scale-out throughput by 5.2x

19

Degraded Reads in AWS

7 60007
=
~.5000]
O
@ 4000
©
—1 30007
®
o 20007
£
© 1000

—e— ccMemcached
---m--- ECHash

0

Degrade

Scale-out: (n, k) = (5, 3) and varying s

» ECHash reduces degraded read latency by up to 89% (s = 5)

« ccMemcached needs to query the persistent database for unavailable objects

20

Node Repair in AWS

o 29] ccMemcached

) ECHash w/ chunk-repair
< 201 Ll ECHash w/ fragment-repair
3 151 o

c —

U} T [S

5 10 _
L

= 5

S [|

g 073 4 5 6
?)

Scale-out: (n, k) = (5, 3) and varying s

» Fragment-repair significantly increases scaling throughput over
chunk-repair, with slight throughput drop than ccMemcached

21

Conclusions

» How to deploy erasure coding in decentralized KV stores for
small-size objects

» Contributions:
* FragEC, a new erasure coding model
 ECHash, a FragEC-based in-memory KV stores
« Extensive experiments on both local and AWS testbeds

» Prototype:
https://github.com/yuchonghu/echash

22

https://github.com/yuchonghu/echash

