
Coupling Decentralized Key-Value Stores

with Erasure Coding

Liangfeng Cheng1, Yuchong Hu1, Patrick P. C. Lee2

1Huazhong University of Science and Technology
2The Chinese University of Hong Kong

SoCC 2019

1

Introduction

Decentralized key-value (KV) stores are widely deployed

• Map each KV object deterministically to a node that stores the object via

hashing in a decentralized manner (i.e., no centralized lookups)

• e.g., Dynamo, Cassandra, Memcached

Requirements

• Availability: data remains accessible under failures

• Scalability: nodes can be added or removed dynamically

2

Erasure Coding

Replication is traditionally adopted for availability

• e.g., Dynamo, Cassandra

• Drawback: high redundancy overhead

Erasure coding is a promising low-cost redundancy technique

• Minimum data redundancy via “data encoding”

• Higher reliability with same storage redundancy than replication

• e.g., Azure reduces redundancy from 3x (replication) to 1.33x (erasure

coding)  PBs saving

How to apply erasure coding in decentralized KV stores?

3

Erasure Coding

Divide file data to k equal-size data chunks

Encode k data chunks to n-k equal-size parity chunks

Distribute the n erasure-coded chunks (stripe) to n nodes

Fault-tolerance: any k out of n chunks can recover file data

4

Nodes

(n, k) = (4, 2)

File encodedivide

A
B

C
D

A+C
B+D

A+D
B+C+D

A
B

C
D

A+C
B+D

A+D
B+C+D

A
B

C
D

Erasure Coding

Two coding approaches

• Self-coding: divides an object into data chunks

• Cross-coding: combines multiple objects into a data chunk

Cross-coding is more appropriate for decentralized KV stores

• Suitable for small objects

• e.g., small objects dominate in practical KV workloads [Sigmetrics’12]

• Direct access to objects

5

Scalability

Scaling is a frequent operation for storage elasticity

• Scale-out (add nodes) and scale-in (remove nodes)

Consistent hashing

• Efficient, deterministic object-to-node mapping scheme

• A node is mapped to multiple virtual nodes on a hash ring for load balancing

6

Add N4

Scalability Challenges

Replication / self-coding for consistent hashing

• Replicas / coded chunks are stored after first node in clockwise direction

Cross-coding + consistent hashing?

• Parity updates

• Impaired degraded reads

7

Challenge 1

Data chunk updates  parity chunk update

Frequent scaling  huge amount of data transfers (scaling traffic)

8

Add N4

Challenge 2

Coordinating object migration and parity updates is challenging

due to changes of multiple chunks

Degraded reads are impaired if objects are in middle of migration
9

a b c d

e f g h

parity

N1

N2

N3

dh N4

Read to d fails until d is migrated
fail

Degraded read to d doesn’t work if
h is migrated away from N2

fail

success

Contributions

New erasure coding model: FragEC

• Fragmented chunks  no parity updates

Consistent hashing on multiple hash rings

• Efficient degraded reads

Fragmented node-repair for fast recovery

ECHash prototype built on memcached

• Scaling throughput: 8.3x (local) and 5.2x (AWS)

• Degraded read latency reduction: 81.1% (local) and 89.0% (AWS)

10

Insight

A coding unit is much smaller than a chunk

• e.g., coding unit size ~ 1 byte; chunk size ~ 4 KiB

• Coding units at the same offset are encoded together in erasure coding

11

…

n chunks of a stripe

Coding units at the same

offset are encoded together

Coding unit

“Repair pipelining for erasure-coded storage”, USENIX ATC 2017

FragEC

Allow mapping a data chunk to multiple nodes

• Each data chunk is fragmented to sub-chunks

Decoupling tight chunk-to-node mappings  no parity updates

12

FragEC

OIRList records how each data chunk is formed by objects, which

can reside in different nodes
13

OIRList lists all object references

and offsets in each data chunk

Scaling

Traverse Object Index to

identify the objects to be

migrated

Keep OIRList unchanged

(i.e., object organization in

each data chunk unchanged)

 No parity updates

14

Multiple Hash Rings

Distribute a stripe across n hash rings

• Preserve consistent hashing design in each hash ring

Stage node additions/removals to at most n-k chunk updates

 object availability via degraded reads
15

Node Repair

 Issue: How to repair a failed node with only sub-chunks?

• Decoding whole chunks is inefficient

Fragment-repair: perform repair at a sub-chunk level

16

Downloads:

data2: b1, b2, b3, b4

data3: c1, c2, c3

parity

Downloads:

data2: b2, b3

data3: c3

parity

Reduce

repair traffic

Chunk-repair Fragment-repair

ECHash

Built on memcached

• In-memory KV storage

• 3,600 SLoC in C/C++

 Intel ISA-L for coding

 Limitations:

• Consistency

• Degraded writes

• Metadata management in

proxy

17

Evaluation

Testbeds

• Local: Multiple 8-core machines over 10 GbE

• Cloud: 45 Memcached instances for nodes + Amazon EC2 instances for

proxy and persistent database

Workloads

• Modified YCSB workloads with different object sizes and read-write ratios

Comparisons:

• ccMemcached: existing cross-coding design (e.g., Cocytus [FAST’16])

• Preserve I/O performance compared to vanilla Memcached (no coding)

• See results in paper

18

Scaling Throughput in AWS

ECHash increases scale-out throughput by 5.2x

19

Scale-out: (n, k, s), where n – k = 2 and s = number of nodes added

Degraded Reads in AWS

ECHash reduces degraded read latency by up to 89% (s = 5)

• ccMemcached needs to query the persistent database for unavailable objects

20

Scale-out: (n, k) = (5, 3) and varying s

Node Repair in AWS

Fragment-repair significantly increases scaling throughput over

chunk-repair, with slight throughput drop than ccMemcached
21

Scale-out: (n, k) = (5, 3) and varying s

Conclusions

How to deploy erasure coding in decentralized KV stores for

small-size objects

Contributions:

• FragEC, a new erasure coding model

• ECHash, a FragEC-based in-memory KV stores

• Extensive experiments on both local and AWS testbeds

Prototype:

• https://github.com/yuchonghu/echash

22

https://github.com/yuchonghu/echash

