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Introduction

» Decentralized key-value (KV) stores are widely deployed

* Map each KV object deterministically to a node that stores the object via
hashing in a decentralized manner (i.e., no centralized lookups)

* e.g., Dynamo, Cassandra, Memcached

» Requirements
« Availability: data remains accessible under failures
« Scalability: nodes can be added or removed dynamically



Erasure Coding

» Replication is traditionally adopted for availability
* e.g., Dynamo, Cassandra
« Drawback: high redundancy overhead

» Erasure coding Is a promising low-cost redundancy technique
« Minimum data redundancy via “data encoding”
« Higher reliability with same storage redundancy than replication

* e.g., Azure reduces redundancy from 3x (replication) to 1.33x (erasure
coding) - PBs saving

» How to apply erasure coding in decentralized KV stores?



Erasure Coding

» Divide file data to k equal-size data chunks

» Encode k data chunks to n-k equal-size parity chunks

» Distribute the n erasure-coded chunks (stripe) to n nodes

» Fault-tolerance: any k out of n chunks can recover file data
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Erasure Coding

» Two coding approaches
« Self-coding: divides an object into data chunks
« Cross-coding: combines multiple objects into a data chunk

» Cross-coding is more appropriate for decentralized KV stores

 Suitable for small objects
* e.g., small objects dominate in practical KV workloads [Sigmetrics’12]

« Direct access to objects



Scalability

» Scaling Is a frequent operation for storage elasticity
« Scale-out (add nodes) and scale-in (remove nodes)

» Consistent hashing
« Efficient, deterministic object-to-node mapping scheme
« A node is mapped to multiple virtual nodes on a hash ring for load balancing




Scalability Challenges

» Replication / self-coding for consistent hashing
* Replicas / coded chunks are stored after first node in clockwise direction

» Cross-coding + consistent hashing?
« Parity updates
* Impaired degraded reads
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» Frequent scaling - huge amount of data transfers (scaling traffic)



Challenge 2
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» Coordinating object migration and parity updates is challenging
due to changes of multiple chunks

» Degraded reads are impaired if objects are in middle of migration
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Contributions

» New erasure coding model: FragEC
* Fragmented chunks = no parity updates

» Consistent hashing on multiple hash rings
 Efficient degraded reads

» Fragmented node-repair for fast recovery

» ECHash prototype built on memcached
« Scaling throughput: 8.3x (local) and 5.2x (AWS)
« Degraded read latency reduction: 81.1% (local) and 89.0% (AWS)
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Insight

» A coding unit is much smaller than a chunk
* e.g., coding unit size ~ 1 byte; chunk size ~ 4 KiB
« Coding units at the same offset are encoded together in erasure coding

Coding units at the same
1 offset are encoded together

' Coding unit

n chunks of a stripe

“Repair pipelining for erasure-coded storage”, USENIX ATC 2017 1
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» Allow mapping a data chunk to multiple nodes
« Each data chunk is fragmented to sub-chunks

» Decoupling tight chunk-to-node mappings = no parity updates
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» OIRList records how each data chunk is formed by objects, which
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Scaling

» Traverse Object Index to Object Index
identify the objects to be 2
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Multiple Hash Rings
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» Distribute a stripe across n hash rings
* Preserve consistent hashing design in each hash ring
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» Stage node additions/removals to at most n-k chunk updates
—> object availablility via degraded reads
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Node Repair

» Issue: How to repair a failed node with only sub-chunks?
« Decoding whole chunks is inefficient

» Fragment-repair: perform repair at a sub-chunk level
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» Built on memcached

* In-memory KV storage
« 3,600 SLoC in C/C++

» Intel ISA-L for coding

» Limitations:
« Consistency
« Degraded writes

* Metadata management in
Proxy
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Evaluation

> Testbeds

* Local: Multiple 8-core machines over 10 GbE

 Cloud: 45 Memcached instances for nodes + Amazon EC2 instances for
proxy and persistent database

» Workloads
« Modified YCSB workloads with different object sizes and read-write ratios

» Comparisons:
 ccMemcached: existing cross-coding design (e.g., Cocytus [FAST 16])

* Preserve I/O performance compared to vanilla Memcached (no coding)
« See results in paper

18



Scaling Throughput in AWS
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Coding Schemes

Scale-out: (n, k, s), where n — k =2 and s = number of nodes added

» ECHash increases scale-out throughput by 5.2x
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Degraded Reads in AWS
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Scale-out: (n, k) = (5, 3) and varying s

» ECHash reduces degraded read latency by up to 89% (s = 5)

« ccMemcached needs to query the persistent database for unavailable objects
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Node Repair in AWS
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Scale-out: (n, k) = (5, 3) and varying s

» Fragment-repair significantly increases scaling throughput over
chunk-repair, with slight throughput drop than ccMemcached
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Conclusions

» How to deploy erasure coding in decentralized KV stores for
small-size objects

» Contributions:
* FragEC, a new erasure coding model
 ECHash, a FragEC-based in-memory KV stores
« Extensive experiments on both local and AWS testbeds

» Prototype:
https://github.com/yuchonghu/echash
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