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Introduction

Decentralized key-value (KV) stores are widely deployed

• Map each KV object deterministically to a node that stores the object via 

hashing in a decentralized manner (i.e., no centralized lookups)

• e.g., Dynamo, Cassandra, Memcached

Requirements

• Availability: data remains accessible under failures

• Scalability: nodes can be added or removed dynamically
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Erasure Coding

Replication is traditionally adopted for availability

• e.g., Dynamo, Cassandra

• Drawback: high redundancy overhead

Erasure coding is a promising low-cost redundancy technique 

• Minimum data redundancy via “data encoding” 

• Higher reliability with same storage redundancy than replication

• e.g., Azure reduces redundancy from 3x (replication) to 1.33x (erasure 

coding)   PBs saving

How to apply erasure coding in decentralized KV stores?
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Erasure Coding

Divide file data to k equal-size data chunks

Encode k data chunks to n-k equal-size parity chunks

Distribute the n erasure-coded chunks (stripe) to n nodes 

Fault-tolerance: any k out of n chunks can recover file data
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Erasure Coding

Two coding approaches

• Self-coding: divides an object into data chunks

• Cross-coding: combines multiple objects into a data chunk 

Cross-coding is more appropriate for decentralized KV stores

• Suitable for small objects 

• e.g., small objects dominate in practical KV workloads [Sigmetrics’12]

• Direct access to objects
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Scalability

Scaling is a frequent operation for storage elasticity

• Scale-out (add nodes) and scale-in (remove nodes)

Consistent hashing 

• Efficient, deterministic object-to-node mapping scheme

• A node is mapped to multiple virtual nodes on a hash ring for load balancing
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Scalability Challenges

Replication / self-coding for consistent hashing 

• Replicas / coded chunks are stored after first node in clockwise direction

Cross-coding + consistent hashing?

• Parity updates

• Impaired degraded reads 
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Challenge 1

Data chunk updates  parity chunk update

Frequent scaling  huge amount of data transfers (scaling traffic)
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Challenge 2

Coordinating object migration and parity updates is challenging 

due to changes of multiple chunks

Degraded reads are impaired if objects are in middle of migration
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Contributions

New erasure coding model: FragEC

• Fragmented chunks  no parity updates

Consistent hashing on multiple hash rings

• Efficient degraded reads

Fragmented node-repair for fast recovery

ECHash prototype built on memcached

• Scaling throughput: 8.3x (local) and 5.2x (AWS)

• Degraded read latency reduction: 81.1% (local) and 89.0% (AWS)
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Insight

A coding unit is much smaller than a chunk

• e.g., coding unit size ~ 1 byte; chunk size ~ 4 KiB

• Coding units at the same offset are encoded together in erasure coding
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“Repair pipelining for erasure-coded storage”, USENIX ATC 2017



FragEC

Allow mapping a data chunk to multiple nodes

• Each data chunk is fragmented to sub-chunks

Decoupling tight chunk-to-node mappings  no parity updates
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FragEC

OIRList records how each data chunk is formed by objects, which 

can reside in different nodes
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OIRList lists all object references 

and offsets in each data chunk



Scaling

Traverse Object Index to 

identify the objects to be 

migrated

Keep OIRList unchanged 

(i.e., object organization in 

each data chunk unchanged)

 No parity updates
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Multiple Hash Rings

Distribute a stripe across n hash rings

• Preserve consistent hashing design in each hash ring

Stage node additions/removals to at most n-k chunk updates

 object availability via degraded reads
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Node Repair

 Issue: How to repair a failed node with only sub-chunks?

• Decoding whole chunks is inefficient

Fragment-repair: perform repair at a sub-chunk level
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ECHash

Built on memcached

• In-memory KV storage

• 3,600 SLoC in C/C++

 Intel ISA-L for coding

 Limitations:

• Consistency

• Degraded writes

• Metadata management in 

proxy
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Evaluation

Testbeds

• Local: Multiple 8-core machines over 10 GbE

• Cloud: 45 Memcached instances for nodes + Amazon EC2 instances for 

proxy and persistent database

Workloads

• Modified YCSB workloads with different object sizes and read-write ratios

Comparisons:

• ccMemcached: existing cross-coding design (e.g., Cocytus [FAST’16])

• Preserve I/O performance compared to vanilla Memcached (no coding) 

• See results in paper
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Scaling Throughput in AWS 

ECHash increases scale-out throughput by 5.2x
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Scale-out: (n, k, s), where n – k = 2 and s = number of nodes added



Degraded Reads in AWS

ECHash reduces degraded read latency by up to 89% (s = 5)

• ccMemcached needs to query the persistent database for unavailable objects
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Scale-out: (n, k) = (5, 3) and varying s



Node Repair in AWS

Fragment-repair significantly increases scaling throughput over 

chunk-repair, with slight throughput drop than ccMemcached
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Scale-out: (n, k) = (5, 3) and varying s



Conclusions

How to deploy erasure coding in decentralized KV stores for 

small-size objects

Contributions:

• FragEC, a new erasure coding model

• ECHash, a FragEC-based in-memory KV stores

• Extensive experiments on both local and AWS testbeds

Prototype:

• https://github.com/yuchonghu/echash
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