
Coupling Decentralized Key-Value Stores

with Erasure Coding

Liangfeng Cheng1, Yuchong Hu1, Patrick P. C. Lee2

1Huazhong University of Science and Technology
2The Chinese University of Hong Kong

SoCC 2019

1

Introduction

Decentralized key-value (KV) stores are widely deployed

• Map each KV object deterministically to a node that stores the object via

hashing in a decentralized manner (i.e., no centralized lookups)

• e.g., Dynamo, Cassandra, Memcached

Requirements

• Availability: data remains accessible under failures

• Scalability: nodes can be added or removed dynamically

2

Erasure Coding

Replication is traditionally adopted for availability

• e.g., Dynamo, Cassandra

• Drawback: high redundancy overhead

Erasure coding is a promising low-cost redundancy technique

• Minimum data redundancy via “data encoding”

• Higher reliability with same storage redundancy than replication

• e.g., Azure reduces redundancy from 3x (replication) to 1.33x (erasure

coding) PBs saving

How to apply erasure coding in decentralized KV stores?

3

Erasure Coding

Divide file data to k equal-size data chunks

Encode k data chunks to n-k equal-size parity chunks

Distribute the n erasure-coded chunks (stripe) to n nodes

Fault-tolerance: any k out of n chunks can recover file data

4

Nodes

(n, k) = (4, 2)

File encodedivide

A
B

C
D

A+C
B+D

A+D
B+C+D

A
B

C
D

A+C
B+D

A+D
B+C+D

A
B

C
D

Erasure Coding

Two coding approaches

• Self-coding: divides an object into data chunks

• Cross-coding: combines multiple objects into a data chunk

Cross-coding is more appropriate for decentralized KV stores

• Suitable for small objects

• e.g., small objects dominate in practical KV workloads [Sigmetrics’12]

• Direct access to objects

5

Scalability

Scaling is a frequent operation for storage elasticity

• Scale-out (add nodes) and scale-in (remove nodes)

Consistent hashing

• Efficient, deterministic object-to-node mapping scheme

• A node is mapped to multiple virtual nodes on a hash ring for load balancing

6

Add N4

Scalability Challenges

Replication / self-coding for consistent hashing

• Replicas / coded chunks are stored after first node in clockwise direction

Cross-coding + consistent hashing?

• Parity updates

• Impaired degraded reads

7

Challenge 1

Data chunk updates parity chunk update

Frequent scaling huge amount of data transfers (scaling traffic)

8

Add N4

Challenge 2

Coordinating object migration and parity updates is challenging

due to changes of multiple chunks

Degraded reads are impaired if objects are in middle of migration
9

a b c d

e f g h

parity

N1

N2

N3

dh N4

Read to d fails until d is migrated
fail

Degraded read to d doesn’t work if
h is migrated away from N2

fail

success

Contributions

New erasure coding model: FragEC

• Fragmented chunks no parity updates

Consistent hashing on multiple hash rings

• Efficient degraded reads

Fragmented node-repair for fast recovery

ECHash prototype built on memcached

• Scaling throughput: 8.3x (local) and 5.2x (AWS)

• Degraded read latency reduction: 81.1% (local) and 89.0% (AWS)

10

Insight

A coding unit is much smaller than a chunk

• e.g., coding unit size ~ 1 byte; chunk size ~ 4 KiB

• Coding units at the same offset are encoded together in erasure coding

11

…

n chunks of a stripe

Coding units at the same

offset are encoded together

Coding unit

“Repair pipelining for erasure-coded storage”, USENIX ATC 2017

FragEC

Allow mapping a data chunk to multiple nodes

• Each data chunk is fragmented to sub-chunks

Decoupling tight chunk-to-node mappings no parity updates

12

FragEC

OIRList records how each data chunk is formed by objects, which

can reside in different nodes
13

OIRList lists all object references

and offsets in each data chunk

Scaling

Traverse Object Index to

identify the objects to be

migrated

Keep OIRList unchanged

(i.e., object organization in

each data chunk unchanged)

 No parity updates

14

Multiple Hash Rings

Distribute a stripe across n hash rings

• Preserve consistent hashing design in each hash ring

Stage node additions/removals to at most n-k chunk updates

 object availability via degraded reads
15

Node Repair

 Issue: How to repair a failed node with only sub-chunks?

• Decoding whole chunks is inefficient

Fragment-repair: perform repair at a sub-chunk level

16

Downloads:

data2: b1, b2, b3, b4

data3: c1, c2, c3

parity

Downloads:

data2: b2, b3

data3: c3

parity

Reduce

repair traffic

Chunk-repair Fragment-repair

ECHash

Built on memcached

• In-memory KV storage

• 3,600 SLoC in C/C++

 Intel ISA-L for coding

 Limitations:

• Consistency

• Degraded writes

• Metadata management in

proxy

17

Evaluation

Testbeds

• Local: Multiple 8-core machines over 10 GbE

• Cloud: 45 Memcached instances for nodes + Amazon EC2 instances for

proxy and persistent database

Workloads

• Modified YCSB workloads with different object sizes and read-write ratios

Comparisons:

• ccMemcached: existing cross-coding design (e.g., Cocytus [FAST’16])

• Preserve I/O performance compared to vanilla Memcached (no coding)

• See results in paper

18

Scaling Throughput in AWS

ECHash increases scale-out throughput by 5.2x

19

Scale-out: (n, k, s), where n – k = 2 and s = number of nodes added

Degraded Reads in AWS

ECHash reduces degraded read latency by up to 89% (s = 5)

• ccMemcached needs to query the persistent database for unavailable objects

20

Scale-out: (n, k) = (5, 3) and varying s

Node Repair in AWS

Fragment-repair significantly increases scaling throughput over

chunk-repair, with slight throughput drop than ccMemcached
21

Scale-out: (n, k) = (5, 3) and varying s

Conclusions

How to deploy erasure coding in decentralized KV stores for

small-size objects

Contributions:

• FragEC, a new erasure coding model

• ECHash, a FragEC-based in-memory KV stores

• Extensive experiments on both local and AWS testbeds

Prototype:

• https://github.com/yuchonghu/echash

22

https://github.com/yuchonghu/echash

