
HP-Mapper: A High Performance Storage
Driver for Docker Containers

Fan Guo1, Yongkun Li1, Min Lv1, Yinlong Xu1, John C.S. Lui2

1University of Science and Technology of China
2The Chinese University of Hong Kong

Outline

2

Background & Motivation1

HP-Mapper Design2

Evaluation3

Conclusion4

n Container
ü Process-level virtualization

l Share host kernel
l Namespaces, Cgroup

ü Better performance
l Fast deployment
l Low resources usage
l Near bare-mental performance

n Docker
ü Most popular container engine
ü Extensively used in production

3

Container and Docker

VM

Container

n Container images
ü Store all requirements for running the containers
ü Hierarchical, read-only, sharable

n Storage drivers
ü Support cross-level lookup and copy-on-write (COW)

Storage Management of Containers

4

Docker storage drivers

Container

Debian (Base Image)
nginx (Image) emacs (Image)

Apache (Image)
writeable layer writeable layer

Container…

Cross-level
lookup

Copy-on-write

Unified view

Container

n Block-based Drivers
ü Block-level COW (≥64KB)
ü Cannot share cached data
ü DeviceMapper, ZFS, BtrFS

Layer1
(read-only)

Layer2
(read-only)

Layer3
(writable)

n File-based Drivers
ü File-level COW
ü Share cached data
ü Overlay2, AUFS

5

Docker Storage Drivers

file4 file5

blk1 blk2

blk5

blk3

blk4

vblk1 vblk2 vblk3 vblk4 vblk5

File1

File2

blk3File1 File2

File2

File1 blk5blk4
File2

File-based Drivers (path→file) Block-based Drivers (vblk→blk)

blk3File1

n File-based storage drivers incur large COW
latency (especially for large files)
ü Incur large write overhead
ü Degrade write performance

6

High COW Latency

File Size 4KB 64KB 1MB 16MB

DeviceMapper 0.12 0.74 0.96 1.39

BtrFS 0.09 0.09 0.09 0.10

Overlay2 1.99 2.49 7.14 61.7

Copy-on-write latency (ms)

Block-based

File-based

n Block-based drivers introduce many redundant
I/Os when reading data from a shared file
ü Degrade I/O performance
ü Waste I/O bandwidth

7

Disk I/O Redundancy

Total amount of reading data during the startup
of 64 containers

Block-based

File-based

n Both kinds of storage drivers generate a lot of
redundant cached data
ü Block-based: Read multiple copies of the data (as

cache can not be shared)
ü File-based: Unchanged data in the file are also

copied when performing copy-on-write

8

Cache Redundancy

n Limitations of current storage drivers
ü Tradeoff between write and read performance
ü Low cache efficiency

n Our goal: Develop a new storage driver for
docker containers
ü Low COW overhead (or high write performance)
ü High read I/O performance
ü High cache efficiency

9

Motivation

Outline

10

Background & Motivation1

HP-Mapper Design2

Evaluation3

Conclusion4

n Key idea: HP-Mapper works at the block level and
manages physical blocks
ü Why block level: Low COW overhead
ü Why physical block: Able to detect redundant I/Os &

redundant cached data

n Three modules
ü Address mapper
ü I/O interceptor
ü Cache manager

11

HP-Mapper: A High Performance Storage Driver

n Tradeoff exists in block-based management
ü Large blocks: high COW latency
ü Small blocks: high lookup and storage overhead due to

large metadata size

n HP-Mapper uses a two-level mapping tree
ü Support two different block sizes
ü Differentiate different requests w/ on-demand allocation

l New write: large sequential I/O (large block size)
l COW: depending on req size

12

Address Mapper

n Two-level mapping tree design

13

Address Mapper

key … key
… …

key … ... … key …
1xx

(PBN) … … … … … … 0xx
(root) …… …

key … key
… …

key …
PBN … …

... …
… … …

key …
PBN … …… …

…

…

Root of Level-1

Root of Level-2

index1 offsetVBN1 index1 offsetindex2VBN2

Storage efficiency
Separated block placement + defragmentation

Head entry1

u64 PBN (key)
u16 copies_num
u64 Super_Block
u64 Inode_ID
void *next
void *tail

Head entry2 ...

Tail entry1

Tail entry2

001

002

…

…

…

… ...

n How to detect redundant I/O
ü Indexing with physical block number (PBN)

n PBN-indexing hash table
ü Entries are linked in a two-dimensional list (LRU)

l Head entry (latest copy) + Tail entry (other copies)

I/O Interceptor – Metadata Management

14

n Detect redundant I/O w/ PBN-index

15

I/O Interceptor - Workflow

Avoid unnecessary
check (write I/Os to

writable layer)

n How to remove redundant copies in cache
ü Periodically scan the hash table to locate cached pages
ü Maintain the hotness of each page (multiple LRU)

n Page eviction: cache hit ratio vs. cache usage
ü Limit # of copies: utilization-aware adjustment
ü Hotness-aware eviction

16

Cache Manager

Page1
(cold)

Page2
(hot)

Page3
(hot)

Page4
(hot)

Page5
(cold)

Page6
(hot)

Page7
(hot)

Page8
(hot)

Page9
(hot)

Cached copies of PBN1

Cached copies of PBN2

Locate &
monitor

Scan next
block

Evict
(copies_limit = 3)

Page1
(cold)

Page2
(hot)

Page3
(hot)

Page4
(hot)

Page5
(cold)

Page6
(hot)

Page7
(hot)

Page8
(hot)

Page9
(hot)

Hash Table

Head entry1
(PBN1)

Tail entry

Tail entry

...

Tail entry

Head entry2
(PBN2)

Tail entry

Tail entry
...

Tail entry

Outline

17

Background & Motivation1

HP-Mapper Design2

Evaluation3

Conclusion4

n Prototype
ü Act as a plugin module in Linux kernel 3.10.0
ü Backing file system: Ext4

n Workloads
ü Container images: Tomcat, Nextcloud, Vault

n Overhead of HP-Mapper

18

Experiment Setup

Overhead of HP-Mapper
(MT represents Mapping Tree, HT represents Hash Table)

n Copy-on-write(COW) latency

19

Reduction of COW Latency

File Size 4KB 64KB 1MB 16MB
DeviceMapper 0.13 0.74 0.96 1.39
BtrFS 0.09 0.09 0.09 0.10
Overlay2 1.99 2.49 7.14 61.7
HP-Mapper 0.07 0.12 0.55 0.57

Copy-on-write latency (ms)

HP-Mapper reduces up to more than 90% COW latency
comparing with DeviceMapper and Overlay2

n Total amount of reading/writing data when
launching 64 containers from a single image

20

Reduction of Redundant I/Os

HP-Mapper efficiently removes redundant read I/Os, and
also reduces more than 50% writing data on average

n Cache usage when starting 64 containers from a
single image

21

Improvement of Cache Efficiency

HP-Mapper reduces more than 65% cache usage on average

n Total startup time when launching 64 containers
from a single image on SSD/HDD

22

Improvement of Startup Time

HP-Mapper achieves up to 2.0× - 7.2× faster startup
speed than the other three storage drivers

n Total startup time when launching 64 containers
in memory-scarce systems

23

Improvement of Startup Time

HP-Mapper achieves larger improvement as
memory size decreases

0

50

100

150

200

12GB 8GB 4GB

To
ta

l S
ta

rt
up

 ti
m

e
(s

)

Total available memory

DM BtrFS Overlay2 HP-Mapper

0

10

20

30

40

6GB 4GB 2GB
To

ta
l S

ta
rt

up
 ti

m
e

(s
)

Total available memory

DM BtrFS Overlay2 HP-Mapper

Launch 64 Nextcloud containers Launch 64 Vault containers

Outline

24

Background & Motivation1

HP-Mapper Design2

Evaluation3

Conclusion4

n Tradeoffs exist for Docker storage drivers
ü File-based: High COW overhead
ü Block-based: Low cache efficiency & redundant I/O

n We develop HP-Mapper which achieves
ü Low COW overhead by following block-based

design with differentiated block sizes
ü High I/O efficiency by intercepting redundant I/Os
ü High cache efficiency by enabling cache sharing

and hotness-aware management

25

Conclusion

Q&A

Yongkun Li
ykli@ustc.edu.cn

http://staff.ustc.edu.cn/~ykli

26

Thanks!

mailto:ykli@ustc.edu.cn

