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n Container
ü Process-level virtualization

l Share host kernel
l Namespaces, Cgroup

ü Better performance
l Fast deployment
l Low resources usage
l Near bare-mental performance

n Docker
ü Most popular container engine
ü Extensively used in production
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Container and Docker

VM

Container



n Container images
ü Store all requirements for running the containers
ü Hierarchical, read-only, sharable

n Storage drivers
ü Support cross-level lookup and copy-on-write (COW)

Storage Management of Containers
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Docker storage drivers
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Container

n Block-based Drivers
ü Block-level COW  (≥64KB)
ü Cannot share cached data
ü DeviceMapper, ZFS, BtrFS

Layer1
(read-only)

Layer2
(read-only)

Layer3
(writable)

n File-based Drivers
ü File-level COW
ü Share cached data
ü Overlay2, AUFS
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Docker Storage Drivers
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n File-based storage drivers incur large COW 
latency (especially for large files)
ü Incur large write overhead 
ü Degrade write performance
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High COW Latency

File Size 4KB 64KB 1MB 16MB

DeviceMapper 0.12 0.74 0.96 1.39

BtrFS 0.09 0.09 0.09 0.10

Overlay2 1.99 2.49 7.14 61.7

Copy-on-write latency (ms)

Block-based

File-based



n Block-based drivers introduce many redundant 
I/Os when reading data from a shared file
ü Degrade I/O performance
ü Waste I/O bandwidth
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Disk I/O Redundancy

Total amount of reading data during the startup 
of 64 containers

Block-based

File-based



n Both kinds of storage drivers generate a lot of 
redundant cached data
ü Block-based: Read multiple copies of the data  (as 

cache can not be shared)
ü File-based: Unchanged data in the file are also 

copied when performing copy-on-write 

8

Cache Redundancy



n Limitations of current storage drivers 
ü Tradeoff between write and read performance
ü Low cache efficiency

n Our goal: Develop a new storage driver for 
docker containers 
ü Low COW overhead (or high write performance)
ü High read I/O performance
ü High cache efficiency 
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Motivation
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n Key idea: HP-Mapper works at the block level and 
manages physical blocks
ü Why block level: Low COW overhead
ü Why physical block: Able to detect redundant I/Os & 

redundant cached data 

n Three modules
ü Address mapper
ü I/O interceptor
ü Cache manager
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HP-Mapper: A High Performance Storage Driver



n Tradeoff exists in block-based management
ü Large blocks: high COW latency
ü Small blocks: high lookup and storage overhead due to 

large metadata size

n HP-Mapper uses a two-level mapping tree
ü Support two different block sizes
ü Differentiate different requests w/ on-demand allocation

l New write: large sequential I/O (large block size)
l COW: depending on req size
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Address Mapper



n Two-level mapping tree design
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Address Mapper
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Head entry1

u64 PBN (key)
u16 copies_num
u64 Super_Block
u64 Inode_ID
void *next 
void *tail

Head entry2 ...

Tail entry1

Tail entry2

001

002

…

…

…

… ...

n How to detect redundant I/O
ü Indexing with physical block number (PBN)

n PBN-indexing hash table  
ü Entries are linked in a two-dimensional list (LRU)

l Head entry (latest copy) + Tail entry (other copies)

I/O Interceptor – Metadata Management
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n Detect redundant I/O w/ PBN-index
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I/O Interceptor - Workflow

Avoid unnecessary 
check (write I/Os to 

writable layer)



n How to remove redundant copies in cache
ü Periodically scan the hash table to locate cached pages
ü Maintain the hotness of each page (multiple LRU)

n Page eviction: cache hit ratio vs. cache usage
ü Limit # of copies: utilization-aware adjustment
ü Hotness-aware eviction
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Cache Manager
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n Prototype
ü Act as a plugin module in Linux kernel 3.10.0
ü Backing file system: Ext4

n Workloads
ü Container images: Tomcat, Nextcloud, Vault

n Overhead of HP-Mapper
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Experiment Setup

Overhead of HP-Mapper 
(MT represents Mapping Tree, HT represents Hash Table)



n Copy-on-write(COW) latency
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Reduction of COW Latency

File Size 4KB 64KB 1MB 16MB
DeviceMapper 0.13 0.74 0.96 1.39
BtrFS 0.09 0.09 0.09 0.10
Overlay2 1.99 2.49 7.14 61.7
HP-Mapper 0.07 0.12 0.55 0.57

Copy-on-write latency (ms)

HP-Mapper reduces up to more than 90% COW latency 
comparing with DeviceMapper and Overlay2



n Total amount of reading/writing data when 
launching 64 containers from a single image
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Reduction of Redundant I/Os

HP-Mapper efficiently removes redundant read I/Os, and 
also reduces more than 50% writing data on average



n Cache usage when starting 64 containers from a 
single image
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Improvement of Cache Efficiency

HP-Mapper reduces more than 65% cache usage on average



n Total startup time when launching 64 containers 
from a single image on SSD/HDD
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Improvement of Startup Time

HP-Mapper achieves up to 2.0× - 7.2× faster startup 
speed than the other three storage drivers



n Total startup time when launching 64 containers 
in memory-scarce systems
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Improvement of Startup Time

HP-Mapper achieves larger improvement as 
memory size decreases 
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n Tradeoffs exist for Docker storage drivers
ü File-based: High COW overhead
ü Block-based: Low cache efficiency & redundant I/O

n We develop HP-Mapper which achieves
ü Low COW overhead by following block-based 

design with differentiated block sizes
ü High I/O efficiency by intercepting redundant I/Os
ü High cache efficiency by enabling cache sharing 

and hotness-aware management
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Conclusion
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