Software Data Planes:
You Can’t Always Spin to Win

Hossein Golestani, Amirhossein Mirhosseini, Thomas F. Wenisch
University of Michigan

ACM Symposium on Cloud Computing (SoCQC)
November 22, 2019

®
\ \
adacenter.org , @ADA_Center /

JU M P This work is supported by the Semiconductor Research Corporation (SRC) and DARPA Applications Driving Architectures

What’s Up in the Cloud?

* Virtual us-scale computing era

Address : 2L
. Firewall
Translation
: Load
Server #1 Server #2

Network function

. o [/O virtualization Microservices
virtualization

 Service objectives

 High throughput Hiah 4 10"
» Low averageftail latency gH-spee
* Image credits: Mellanox, Intel

Software Data Planes: You Can’t Always Spin to Win

Software Stacks: Under Revision

* Then vs. now

Kernel : :

« Kernel-bypass architectures (just a handful)

Andromeda [NSDI'18] MTCP [NSDI'14] Shinjuku [NSDI'19]
Arrakis [OSDI'14] ReFlex [ASPLOS'17] Snap [SOSP’19]
[X [OSDI'14] Shenango [NSDI'19] ZygOS [SOSP’17]

Software Data Planes: You Can’t Always Spin to Win

Software Data Planes

« Key mechanisms
» User-level shared queues
« Spin-polling cores

 Fast notification by cache coherence write signals

« Widely adopted in industry @ D P D K SPDK

DATA PLANE DEVELOPMENT KIT STORAGE PERFORMANCE DEVELOPMENT KIT

Software Data Planes: You Can’t Always Spin to Win

Spin-polling: Not a Panacea

* An easy-to-use and fast model for communication and signaling

|
[
il
Ll
|
[

 But far from ideal, especially when scaled

1]

1l
0

Il
1]

1l

* We show that spin-based data planes:
« Perform more work when there is less
« Are not scalable to many cores
« Are not scalable to many queues
« Are not well-suited for shared queues

Software Data Planes: You Can’t Always Spin to Win

Outline

* Methodology
« Characterization of Software Data Plane Challenges
« Solution Directions

 Conclusion

Software Data Planes: You Can’t Always Spin to Win

Methodology

e Setup
« DPDK-based applications /@) @ = ZI& zh

» Skylake cores & .

. 100GbE Mellanox NIC XEON. Mellanox
DPDK _ _ |

°@onnect><'5

inside”

* EXperiments
Inefficiencies of spin-polling
Lack of queue scalability

Impracticality of queue sharing

Software Data Planes: You Can’t Always Spin to Win

Inefficiencies of Spin-polling

* Polling “tax”
* Body of poll loop 1
» Useless polling on idle queues (possibly causing cache misses)

 Affects throughput scalabllity with cores

(1) | While forever: : NIC ol
(2) For each RX queue: . Port 1

(3) Read packets from RX queue; @

(4) If there are any packets:

(5) Route packets using LPM*; : NIC N
(6) Send packets to TX queue (s); ' Port 2

* LPM: Longest Prefix Match

Software Data Planes: You Can’t Always Spin to Win

IPC != Useful Work

* |IPC (Instructions Per Cycle) of routing core at varying loads

2.75 1
250 =
o 225 —— —e— —e
§ 2.00
= 1.75
.g 1.50
=
s 1.25 2
« 1.00 -1 queue
O
0.75
O -=-4 queues
a 0.50 q
0.25 8 queues
0.00
0 5 10 15 20 25 30

Routing throughput (Mpps)

Software Data Planes: You Can’t Always Spin to Win

Effect on SMT Co-runner

* More (useless) instructions executed in lighter traffic

. 2.5
e Co-running:
e Matrix mult
« Spin-based routing (0-100% load)

N
o

=
ol

=
o

* Executed on:
« SMT cores of a physical CPU
« Different physical CPUs

IPC of matrix mult

o
&

o
o

Not collocated Collocated Collocated
Routing-0% Routing-100%

Software Data Planes: You Can’t Always Spin to Win

Lack of Queue Scalability

* Traffic flows spread among multiple queues

 Limited size of CPU caches: a performance antagonist

* EXperiment 5
* Forwarding packets by a single core _ NiC
« Scaling up the number of queues : Port1 |°

NIC
Port 2

Software Data Planes: You Can’t Always Spin to Win

Effect on Latency

* Round-trip latency of packet forwarding
* Light traffic (minimal queuing delay)

N
ol

o

Average latency (us)
o o o o
N

128 192 256 320 384 448 512
Number of queues

M Software Data Planes: You Can’t Always Spin to Win 12

o
(e))
Y

Effect on Peak Throughput

« Balanced traffic: Passing through all queues

« Unbalanced traffic: Passing through only one queue 1
A40 —=—Balanced
2 3 —e—Unbalanced
S 30
%25
S 2 2
515
-]
910 B — — o O —} |
e
~ 5
0 —— —9
0 64 128 192 256 320 384 448 512
Total number of queues 3

Software Data Planes: You Can’t Always Spin to Win

Scale-up Queuing Is Impractical

* (a) Scale-out vs. (b) Scale-up queuing (shared queue)
—
<>

(a) (b)
« Scale-up queuing
» Strong theoretical merits
« Synchronization disadvantage

Software Data Planes: You Can’t Always Spin to Win

Scale-out vs. Scale-up

* Processing hiccups cause head-of-line (HolL) blocking in scale-out

* Round-trip latency with 10 parallel cores 1
(a) No hiccups 00 00 4
(b) 1us processing hiccup ggig gggg
with 1% probability g 25 g 25
T 200 T 200 2
© 150 o 150
@©)
E’ 128 —»—Scale-out § 128 —e—Scale-out
< 0 —a—Scale-up < 0 —a—Scale-up
0 20 40 60 0 20 40 60
Throughput (Mpps) Throughput (Mpps) 3

Software Data Planes: You Can’t Always Spin to Win

Future Data Planes

Software Data Planes: You Can’t Always Spin to Win

Solution Direction(s)

* QWAIT, a multi-address monitoring scheme
* Inspired by x86 MWATIT
 Avoids polling tax, useless polling, and disruption to SMT co-runners
* Needs hardware support

* Programming model similar to select-case in Go

QWAIT (queue set):
case queue 1:

process queue 1();

case Jqueue n:

process queue n();

Software Data Planes: You Can’t Always Spin to Win

Conclusion

« Key mechanisms of software data planes
» User-level shared queues
» Spin-polling cores

 Although easy-to-use and low-latency, software data planes have
deficiencies, especially when scaled

» Using DPDK, we gquantified these deficiencies:
* Incurring polling overhead and useless work
* Not scalable to many cores/queues
* Not well-suited for scale-up queuing

Software Data Planes: You Can’t Always Spin to Win

Q&A

Thank you!

Software Data Planes: You Can’t Always Spin to Win

