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• Virtual μs-scale computing era

• Service objectives

• High throughput

• Low average/tail latency
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* Image credits: Mellanox, Intel
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• Then vs. now

• Kernel-bypass architectures (just a handful)
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• Key mechanisms

• User-level shared queues

• Spin-polling cores

• Fast notification by cache coherence write signals

• Widely adopted in industry
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• An easy-to-use and fast model for communication and signaling

• But far from ideal, especially when scaled

• We show that spin-based data planes:

• Perform more work when there is less

• Are not scalable to many cores

• Are not scalable to many queues

• Are not well-suited for shared queues
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Spin-polling: Not a Panacea
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• Introduction to Software Data Planes

• Methodology

• Characterization of Software Data Plane Challenges

• Solution Directions

• Conclusion
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Outline
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• Setup
• DPDK-based applications

• Skylake cores

• 100GbE Mellanox NIC

• Experiments

Inefficiencies of spin-polling

Lack of queue scalability

Impracticality of queue sharing
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Methodology
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• Polling “tax”
• Body of poll loop

• Useless polling on idle queues (possibly causing cache misses)

• Affects throughput scalability with cores
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While forever:

For each RX queue:

Read packets from RX queue;

If there are any packets:

Route packets using LPM*;

Send packets to TX queue(s);

* LPM: Longest Prefix Match

Inefficiencies of Spin-polling

Polling tax can be 20-28% of total CPU cycles even in 100% load
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• IPC (Instructions Per Cycle) of routing core at varying loads
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IPC != Useful Work
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IPC decreases as load increases, resulting in

energy inefficiency, fast aging, and severe co-runner interference



• More (useless) instructions executed in lighter traffic

• Co-running:
• Matrix mult

• Spin-based routing (0-100% load)

• Executed on:
• SMT cores of a physical CPU

• Different physical CPUs
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Effect on SMT Co-runner

Useless spinning wastes execution resources of an SMT co-runner
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• Traffic flows spread among multiple queues

• Limited size of CPU caches: a performance antagonist

• Experiment
• Forwarding packets by a single core

• Scaling up the number of queues
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Lack of Queue Scalability
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• Round-trip latency of packet forwarding

• Light traffic (minimal queuing delay)
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Latency is severely affected as queue heads fall out of L1/L2 caches

Effect on Latency
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• Balanced traffic: Passing through all queues

• Unbalanced traffic: Passing through only one queue
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Effect on Peak Throughput
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Cache misses not interleaved with transmits 

severely hurt peak throughput in unbalanced traffic
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• (a) Scale-out vs. (b) Scale-up queuing (shared queue)

• Scale-up queuing

• Strong theoretical merits

• Synchronization disadvantage
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Scale-up Queuing Is Impractical
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• Processing hiccups cause head-of-line (HoL) blocking in scale-out

• Round-trip latency with 10 parallel cores
(a) No hiccups

(b) 1μs processing hiccup
with 1% probability
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Although effective in avoiding HoL blocking,

spin-polling in scale-up queuing saturates at lower loads

Scale-out vs. Scale-up
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Future Data Planes
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• QWAIT, a multi-address monitoring scheme
• Inspired by x86 MWAIT

• Avoids polling tax, useless polling, and disruption to SMT co-runners

• Needs hardware support

• Programming model similar to select-case in Go
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Solution Direction(s)

QWAIT (queue_set):

case queue_1:

process_queue_1();

…

case queue_n:

process_queue_n();
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• Key mechanisms of software data planes
• User-level shared queues

• Spin-polling cores

• Although easy-to-use and low-latency, software data planes have 
deficiencies, especially when scaled

• Using DPDK, we quantified these deficiencies:
• Incurring polling overhead and useless work

• Not scalable to many cores/queues

• Not well-suited for scale-up queuing
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Conclusion
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Thank you!
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Q & A
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