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What’s Up in the Cloud?

* Virtual us-scale computing era

Address : 2L
. Firewall
Translation
: Load
Server #1 Server #2

Network function

. o [/O virtualization Microservices
virtualization

 Service objectives

 High throughput Hiah 4 10"
» Low averageftail latency gH-spee
* Image credits: Mellanox, Intel
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Software Stacks: Under Revision

* Then vs. now

Kernel : :

« Kernel-bypass architectures (just a handful)

Andromeda [NSDI'18] MTCP [NSDI'14] Shinjuku [NSDI'19]
Arrakis [OSDI'14] ReFlex [ASPLOS'17] Snap [SOSP’19]
[X [OSDI'14] Shenango [NSDI'19] ZygOS [SOSP’17]
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Software Data Planes

« Key mechanisms
» User-level shared queues
« Spin-polling cores

 Fast notification by cache coherence write signals

« Widely adopted in industry @ D P D K SPDK

DATA PLANE DEVELOPMENT KIT STORAGE PERFORMANCE DEVELOPMENT KIT
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Spin-polling: Not a Panacea

* An easy-to-use and fast model for communication and signaling

|
[
il
Ll
|
[

 But far from ideal, especially when scaled
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* We show that spin-based data planes:
« Perform more work when there is less
« Are not scalable to many cores
« Are not scalable to many queues
« Are not well-suited for shared queues
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Outline

* Methodology
« Characterization of Software Data Plane Challenges
« Solution Directions

 Conclusion
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Methodology

e Setup
« DPDK-based applications /@) @ = ZI& zh

» Skylake cores & .

. 100GbE Mellanox NIC XEON. Mellanox
DPDK _ _ |

°@onnect><'5

inside”

* EXperiments
Inefficiencies of spin-polling
Lack of queue scalability

Impracticality of queue sharing
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Inefficiencies of Spin-polling

* Polling “tax”
* Body of poll loop 1
» Useless polling on idle queues (possibly causing cache misses)

 Affects throughput scalabllity with cores

(1) | While forever: : NIC ol
(2) For each RX queue: . Port 1

(3) Read packets from RX queue; @

(4) If there are any packets:

(5) Route packets using LPM*; : NIC N
(6) Send packets to TX queue (s); ' Port 2

* LPM: Longest Prefix Match
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IPC != Useful Work

* |IPC (Instructions Per Cycle) of routing core at varying loads
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Effect on SMT Co-runner

* More (useless) instructions executed in lighter traffic

. 2.5
e Co-running:
e Matrix mult
« Spin-based routing (0-100% load)
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* Executed on:
« SMT cores of a physical CPU
« Different physical CPUs

IPC of matrix mult

o
&

o
o

Not collocated Collocated Collocated
Routing-0% Routing-100%
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Lack of Queue Scalability

* Traffic flows spread among multiple queues

 Limited size of CPU caches: a performance antagonist

* EXperiment 5
* Forwarding packets by a single core _ NiC
« Scaling up the number of queues : Port1 |°

NIC
Port 2
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Effect on Latency

* Round-trip latency of packet forwarding
* Light traffic (minimal queuing delay)
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Effect on Peak Throughput

« Balanced traffic: Passing through all queues

« Unbalanced traffic: Passing through only one queue 1
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Scale-up Queuing Is Impractical

* (a) Scale-out vs. (b) Scale-up queuing (shared queue)
—
<>

(a) (b)
« Scale-up queuing
» Strong theoretical merits
« Synchronization disadvantage
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Scale-out vs. Scale-up

* Processing hiccups cause head-of-line (HolL) blocking in scale-out

* Round-trip latency with 10 parallel cores 1
(a) No hiccups 00 00 4
(b) 1us processing hiccup ggig gggg
with 1% probability g 25 g 25
T 200 T 200 2
© 150 o 150
@© )
E’ 128 —»—Scale-out § 128 —e—Scale-out
< 0 —a—Scale-up < 0 —a—Scale-up
0 20 40 60 0 20 40 60
Throughput (Mpps) Throughput (Mpps) 3
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Future Data Planes
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Solution Direction(s)

* QWAIT, a multi-address monitoring scheme
* Inspired by x86 MWATIT
 Avoids polling tax, useless polling, and disruption to SMT co-runners
* Needs hardware support

* Programming model similar to select-case in Go

QWAIT (queue set):
case queue 1:

process queue 1();

case Jqueue n:

process queue n();
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Conclusion

« Key mechanisms of software data planes
» User-level shared queues
» Spin-polling cores

 Although easy-to-use and low-latency, software data planes have
deficiencies, especially when scaled

» Using DPDK, we gquantified these deficiencies:
* Incurring polling overhead and useless work
* Not scalable to many cores/queues
* Not well-suited for scale-up queuing
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Q&A

Thank you!
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