

Repeatable Oblivious Shuffling of Large Outsourced Data Blocks

Zhilin Zhang⁺, Ke Wang, Weipeng Lin, Ada Wai-Chee Fu, Raymond Chi-Wing Wong ⁺Simon Fraser University, Amazon

Outsourcing in the Cloud

2019 Public cloud services market >\$206.2 B

Source: Gartner's annual forecast of worldwide public cloud service revenue

NEWS

Microsoft Cloud Data Breach Heralds Things to Come

🚯 💟 🖗 🎯 🖸 🕞

Image: Note of the cloud server Note of the cloud server

By Chris Baraniuk Technology reporter

🕓 25 April 2016

Secret

< Share

HULTON ARCHIVE

●CBS NEWS → SHOWS → LIVE → III Q

Hundreds of millions of Facebook user records were exposed on Amazon cloud server

BY JASON SILVERSTEIN UPDATED ON: APRIL 4, 2019 / 11:35 AM / CBS NEWS f 🎔 🖬

Cost of a Retail Data Breach: \$179 Million for Home Depot

Mar 14, 2017 | Cybersecurity News

Secure Computation Outsourcing

Encryption is Insufficient

Input: [a], [b] Task: if a > b: $branch 1 \leftarrow a=2, b=1$ else: $branch 2 \leftarrow a=1, b=2$

Oblivious algorithm: make the control flow be independent of the input data

• oblivious transfer/ sorting/ shuffling, etc.

Problem

Oblivious Shuffling (OS)

A shuffling of n encrypted data blocks $[B] = ([B_1], \cdots , [B_n])$ according to a permutation π is oblivious if the server is unable to infer π .

Untrackable

Application

private data access (hide access pattern) private data integration/sharing (hide data source) coin mixing in cryptocurrency (hide owner anonymity)

State of the Art

All existing OS methods rely on the movement of outsourced data to the client.

download for shuffling

download for peel-off

heavy communication for shuffling large-sized blocks

Repeatable Oblivious Shuffle

Definition

An oblivious shuffle of $[B] = ([B_1], \dots, [B_n])$ is repeatable if it is performed by the server without increasing encryption layers.

Preliminaries

Homomorphic matrix multiplication

$$[M_1] \odot M_2 = [M_1 \cdot M_2]$$

Hatrix based data shuffling

$$B \cdot \pi = (B_1, B_2) \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow (B_2, B_1)$$

Main Idea

Key Requirements

- repeatability: server side shuffling, no increase in encryption layers
- obliviousness: shuffling must be oblivious

split the information of π into plaintext H and some ciphertext [H_A]

Formalization

Analysis

Experimental Settings

	Algorithm	Description
Our approach	ROS	Server-side shuffling without increasing encryption layer
Baseline	ClientShuffle	Client-side shuffling (download data for every shuffling)
	LayeredShuffle $(l = 2)$	Service-side shuffling with increasing encryption layers (download data for peeling off extra layers after every <i>l</i> shuffles)
	LayeredShuffle ($l = 10$)	

Effect of Block Size m

Shuffle cost w.r.t. block size m (MB) (n = 4, ClientShuffle has no server computation and thus not reported)

Effect of Block Number n

Shuffle cost w.r.t. block number n (m=10 MB, ClientShuffle has no server computation and not reported)

