
WormSpace: A Modular Foundation for
Simple, Verifiable Distributed Systems

Ji-Yong Shin1 Jieung Kim1 Wolf Honore1 Hernan Vanzetto1

Srihari Radhakrishnan2 Mahesh Balakrishnan3 Zhong Shao1

1Yale University 2Duke University 3Facebook

ACM Symposium on Cloud Computing
Nov 22, 2019

Cloud and Distributed Application Environment
• Numerous distributed services are readily available
• New applications are built by combining existing building blocks
• New services are continuously developed and deployed

2

Amazon
EBS

Google
Dataflow

Azure
Virtual

Network

Azure
SQL DB

Google
ML Engine

Amazon
Digital

Publishing

Amazon
EBS

Google
Dataflow

Azure
Virtual

Network

Azure
SQL DB

Google
ML Engine

Amazon
Digital

Publishing

Cloud and Distributed Application Environment
• Distributed services use and re-implement similar features

• Distributed systems are complex and difficult to build correctly

3

Exploration for a common, bug-free foundation

Redundant efforts

Subtle bugs

Design Goals
1. Supports common needs for most systems

2. Simple and easy-to-understand APIs

3. Flexible support for optimizations

4. Guaranteed correctness with extensibility

4

System design

Formal Verification

Write once register (WOR)

• Distributed register
– Replicated by construction (fault tolerance, availability, durability)

• Write-once-read-many abstraction
– Atomically writes data (consistency)
– Only one of concurrent writes succeeds (concurrency control, immutability)

5

WOR

WOR

WORWOR

Writes • Logically equivalent to consensus
(Paxos, Chain-replication, PBFT, etc.)

• Lowest common denominator

WORs in Existing Systems
• State machine replication (SMR) and multi-Paxos

– Append / sequential read to WORs

• Shared log: Corfu, Tango
– Append / random read to WORs

• Transaction coordinator: 2 phase commit
– Random write / random read to WORs

• Coordination service: chubby, zookeeper
– File APIs over SMR on WORs

• Group communication: pub/sub
– Append / sequential read to WORs

WOR APIs
• Capture

– Preemptible lock concept
– Coordination before write
– Returns a capture token

• Write
– Writes to the WOR
– Capture must be valid

• Read
– Reads the register
– Returns data or “empty”

7

WOR

A B

A B

Paxos: phase 1 prepare
PBFT: pre-prepare + prepare
Chain-replication: no-op

Paxos: phase 2 accept
PBFT: commit
Chain-replication: write to the chain

WormSpace (Write-Once-Read-Many Address Space)

• An address space of WORs
• Write-once-segment (WOS) for management

– Unit of allocation (alloc) and garbage collection (trim)
– Consists of special WORs and data WORs
– Support for batch-capture and batch-write to all WORs

8

Paxos
S

S
S

S S 1. The complexity of Paxos and
distributed servers are hidden

2. Can use alternative
implementations

Distributed servers

Client library
WOR WOR WOR WOR WOR WOR WOR WOR WOR WOR WOR WOR WOR WOR WOR

…Meta
WOR

Trim
WOR WOR WOR WOR Meta

WOR
Trim
WOR WOR WOR WOR Meta

WOR
Trim
WOR WOR WOR WOR

…WO Segment WO Segment WO Segment

Meta
WOR

Trim
WOR WOR

WormSpace
…

WormSpace Applications
• WormPaxos

– Multi-Paxos / state machine replications

• WormLog
– Corfu / shared-log

• WormTX
– 2PC variant / non-blocking atomic commit

…Meta
WOR

Trim
WOR WOR WOR WOR Meta

WOR
Trim
WOR WOR WOR WOR Meta

WOR
Trim
WOR WOR WOR WOR

…WO Segment WO Segment WO Segment

WormSpace
…

9

Please refer to the paper for
interesting latency optimizations

WormPaxos: Flexible Design Choices
• Multi-Paxos variant for state machine replication
• Design decisions can be easily configured

– Various single-degree consensus protocols
– Leader election: who allocates a WOS and batch captures it?

• Mencius-like rotating leaders are easy to implement
• Raft-like leader election can be implemented orthogonally with a timer

– When to call trim call determines durability

10

…Meta
WOR

Trim
WOR WOR WOR WOR Meta

WOR
Trim
WOR WOR WOR WOR Meta

WOR
Trim
WOR WOR WOR WOR

…WO Segment WO Segment WO Segment

WormSpace
…
1. Paxos
2. Chain-replication
3. Etc.

State Machine Replication Commands

WormSpace APIs are enough and no need to understand Paxos

Formal Verification
• WOR is primitive, but encapsulates key distributed properties

– Consistency, durability and availability

• Concurrent Certified Abstraction Layer (CCAL)
– Divides software into layers
– Verifies each layer
– Verifies layers interact correctly
– Lower layer properties hold in higher layers

11

Can we verify WOR once and reuse it multiple times?

[Gu, et al. PLDI 18]

Certified Concurrent Abstraction Layer (CCAL)

12

LList

C Implementation

Specification

LQueue (Uses LList)

LSched (Uses LQueue)

Contextual refinement proof

Contextual refinement proof

Refinement proof
Informally,

when we run ANY Program (context) on the Queue,

the state reached by the Queue has a matching state with

the List which runs the Queue’s impl and the Program.

Sched does not need to know about List at all!

1. Rely-guarantee style concurrency
reasoning

2. Use of a logical network log
3. Proof by induction on the log

Verification Details

13

Data
Trusted

Computing Base

Data
Trusted

Computing Base

Data
Trusted

Computing Base

Data
TCB

Data
Trusted

Computing Base

Data
Trusted

Computing Base

Data
Trusted

Computing Base

Data
TCB

Global Layer (distributed system model)

Write Once Register (WOR)
Write Once Segment (WOS)

WormSpace

Cl
ie

nt
 L

ib
ra

ry
 L

ay
er

s

Se
rv

er
 la

ye
rs

Distributed protocol
verification

(Paxos immutability)

Oblivious of
distributed nature

Preserves distributed
protocol correctness

CertiKOS (fully verified OS)
[Gu, et al. OSDI 16]

The first
end-to-end verification
of distributed system

from the OS
(x86 ASM to Dist Apps)

WormPaxos WormLog
WormPaxos WormLog
WormPaxos WormLog
WormPaxos WormLog

WormPaxos
WormPaxos
WormPaxos

WormTx

Worm Client
Paxos Proposer

Worm Server
Paxos Acceptor

Worm Client
Paxos Proposer

Worm Server
Paxos Acceptor

Worm Client
Paxos Proposer

Worm Server
Paxos Acceptor

Worm Client
Paxos Proposer

Worm Server
Paxos Acceptor

Experience

14

Data
Trusted

Computing Base

Data
Trusted

Computing Base

Data
Trusted

Computing Base

Data
TCB

Data
Trusted

Computing Base

Data
Trusted

Computing Base

Data
Trusted

Computing Base

Data
TCB

Global Layer (distributed system model)

Write Once Register (WOR)
Write Once Segment (WOS)

WormSpace

Cl
ie

nt
 L

ib
ra

ry
 L

ay
er

s

Se
rv

er
 la

ye
rs

WormPaxos WormLog
WormPaxos WormLog
WormPaxos WormLog
WormPaxos WormLog

WormPaxos
WormPaxos
WormPaxos

WormTx

Worm Client
Paxos Proposer

Worm Server
Paxos Acceptor

Worm Client
Paxos Proposer

Worm Server
Paxos Acceptor

Worm Client
Paxos Proposer

Worm Server
Paxos Acceptor

Worm Client
Paxos Proposer

Worm Server
Paxos Acceptor

6 months

< 1 month

108K Lines of Coq Proof

4.5K CLoC

359
CLoC

362
CLoC

547
CLoC

1.5 months

• Simple API and no need to understand distributed protocols
• Distributed verification is hidden, but verified properties hold

Evaluation
• WormPaxos vs Egalitarian Paxos and its calssical multi-Paxos impl.

– Amazon EC2: 3 servers and 16 client nodes
– Write-only benchmark
– C vs. Go and different internals

15

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

La
te

nc
y

(m
s)

Throughput (KOps/s)

WormPaxos EPaxos CPaxos

Verified systems are not slow!

Evaluation
• WormSpace over CertiKOS

– Local cloud with same configuration as Amazon EC2

– Over 10X lower throughput and over 1.5X higher latency
– Mainly due to inefficiencies in LwIP of CertiKOS

16

0

1

2

3

4

5

6

0 5 10 15 20 25 30

La
te

nc
y

(m
s)

Throughput (KOps/s)

Ubuntu+WormPaxos CertiKOS+WormPaxos

Conclusion
• Write once registers for programming

– Lowest common denominator for most systems
– Source of consistency, availability, and durability

• Write once register for verification
– Primitive module that encapsulates key distributed system properties
– Can be verified once and reused to simplify application verification

• WormSpace for simple, verifiable distributed systems
– Address space of WOR and with extra APIs
– Allows for simple and flexible distributed application designs
– Facilitates verification of distributed applications

17

Thank you

Questions?

jiyong.shin@yale.edu

18

mailto:jiyong.shin@yale.edu

	WormSpace: A Modular Foundation for Simple, Verifiable Distributed Systems
	Cloud and Distributed Application Environment
	Cloud and Distributed Application Environment
	Design Goals
	Write once register (WOR)
	WORs in Existing Systems
	WOR APIs
	WormSpace (Write-Once-Read-Many Address Space)
	WormSpace Applications
	WormPaxos: Flexible Design Choices
	Formal Verification
	Certified Concurrent Abstraction Layer (CCAL)
	Verification Details
	Experience
	Evaluation
	Evaluation
	Conclusion
	Thank you

