
Sifter: Scalable Sampling for
Distributed Traces, without

Feature Engineering

Pedro Las-Casas

with Giorgi Papakerashvili, Vaastav Anand and Jonathan Mace

Sifter: a sampler for distributed traces
Part of distributed tracing backends

Problem: too many traces

Biased trace sampling
Which traces should we keep?

Which traces should we discard?
What constitutes an “interesting” trace?

Distributed Tracing

Dapper

Canopy

Client

ComposePost

Memcached

MongoDB

ComposePost
Memcached

MongoDB

Client

Sen
ding RPC

Rec
eiv

ed

Res
ponse

Time

Distributed Trace
An end-to-end recording of one request

Distributed Trace
An end-to-end recording of one request

ComposePost

Memcached

MongoDB

Each request generates a new trace

Traces with different execution paths == Traces with different structure

Distributed Trace
An end-to-end recording of one request

Each request generates a new trace

Time

Distributed Trace
An end-to-end recording of one request

Each request generates a new trace

Fr
eq

ue
nc

y

Request Latency

ComposePost
Memcached

MongoDB

Client

Traces

- Diagnosing latency problems
- Investigating bugs

Fr
eq

ue
nc

y

Request Latency

Sampling

Trace sampling
Individual traces can be very detailed

Tracing every request = too much data

Uniform random sampling

Traces

Biased Sampling

Adjust sampling probability based on how “interesting” trace is

Uncommon cases
Infrequently seen

Interesting

High probability

Common-cases
Frequently seen

Not very interesting

Low probability

Biased Sampling

Adjust sampling probability based on how “interesting” trace is

Fr
eq

ue
nc

y

Request Latency

Sample traces across latency distribution

Sifter: a sampler for distributed
traces

Part of distributed tracing backends
Biased trace sampling

Use traces to model the system’s behaviors
Low-dimensional probabilistic model forces approximation

Challenges

Operational requirements
Continuous operation over a stream of traces

Low overhead per sampling decision
Large volume of traces

What is an interesting trace?
Lack of standard techniques or metrics

Feature engineering is undesirable

Differences manifest structurally
If two traces are conceptually different

then they will also differ in their
events, spans, timing, and ordering

RPC timeout
RPC retry

RPC tim
eo

ut

RPC re
try

Differences manifest structurally
If two traces are conceptually different

then they will also differ in their
events, spans, timing, and ordering

Sifter’s approach:
Unsupervised sampling decisions
Directly on trace data
No pre-defined high-level features

Sifter: Trace Representation

Sifter: Trace Representation

We rely on the system’s
source code information for

the events

Sifter: Trace Representation

We represent our traces as a directed acyclic graph (DAG),
instead of a span

Sifter: Trace Representation

a…

d… w…

k…

j…

i…

g…f…

v…u… t…s…

r…

q…

p…

o…

n…

m

b… c…

We represent our traces as a directed acyclic graph (DAG),
instead of a span

- Labels aren’t unique
- Same line of code can
 execute multiple times

Sifter: Probabilistic Modeling

Traces are examples
Each trace executes some code paths

The stream of traces tell us path frequencies
Use traces to build a probabilistic model

Unbiased model
Sifter sees all traces, regardless of sampling decision

Unbiased model can identify outliers to sample

Sifter Workflow

(1)

(2)

Receive trace

Convert it into a DAG

Sifter Workflow

(1)

(2)

(3)

Receive trace

Convert it into a DAG

Extract all N-length paths

Sifter Workflow
(1)

(2)

(3)

(4)

(5)

(6)

Use paths as input to Sifter’s model

Sifter’s internal model

Model outputs a prediction of
the middle event in the path

Sifter Workflow
(1)

(2)

(3)

(4)

(5)

(6)

(7) Loss

(8) Backpropagation
updates model weights
incorporates new trace

Error between predictions
labels and actual labels

Sifter Workflow
(1)

(2)

(3)

(4)

(5)

(6)

(7) loss

(8) Backpropagation

(9) Sampling probability
highest sampling

probability

lowest sampling
probability

lo
ss

previous K traces this trace

Sifter Workflow
(1)

(2)

(3)

(4)

(5)

(6)

(7) loss

(8) Backpropagation

(9)

Unbiased model
Sifter sees all traces, regardless of sampling decision

Every trace updates the model
Unbiased model can identify outliers to sample

No pretraining necessary

Evaluation

Operational requirements
Is Sifter fast?

Does Sifter scale?

What is an interesting trace?
Do we detect uncommon and outlier traces?

Can we manage imbalanced classes?

Evaluation

DeathStarBench

social network benchmark

Hadoop Distributed File System

Production traces

Sifter’s implementation using

Tensorflow

Operational requirements
Is Sifter fast?

Does Sifter scale?

Sifter’s internal state is explicitly constrained

�
�.�
�.�
�.�
�.�
�

� � � � � � �� �� �� �� ����
Sampling Latency (ms)

CD
F DeathStar

HDFS
Production

Computational cost depends only on:

(1) number of paths in the trace

(2) number of unique labels in the trace

(N=5)

Sampling latencies range

from 3 and 20 milliseconds

Replay a stream of traces
Inject traces from unrepresented / underrepresented classes

Known features:
(1) different API types

(2) parameters to API calls
(3) known errors / exceptions

Does Sifter detect uncommon and outlier traces?

0
1
2
3
4
5
6

Lo
ss

1% sampling rate

0

0.1

0.2

0.3

0.4

0 100 200 300 400 500 600 700 800 900 1000
Trace

Pr
ob
ab
ili
ty

0

0.1

0.2

0.3

0.4

0 100 200 300 400 500 600 700 800 900 1000

Pr
ob
ab
ili
ty

Does Sifter detect uncommon and outlier traces?

995 HDFS read API calls 5 HDFS write API calls

How does Sifter manage imbalanced classes?

Production traces - 10,000 traces in 5 different classes

0

10

20

30

40

50

Random Sifter Hierarchical Clustering

API-1 API-2 API-3 API-4 API-5

Ideal
Worse

Worse

How does Sifter manage imbalanced classes?

Production traces - 10,000 traces in 5 different classes

Mean-squared error

Sifter

Hierarchical
Clustering

Random

35.95

193.12

283.60

0

10

20

30

40

50

Random Sifter Hierarchical Clustering

API-1 API-2 API-3 API-4 API-5

How does Sifter manage imbalanced classes?

Production traces - 10,000 traces in 5 different classes

Mean-squared error

Sifter

Hierarchical
Clustering

Random

35.95

193.12
283.60

0

10

20

30

40

50

Random Sifter Hierarchical Clustering

API-1 API-2 API-3 API-4 API-5

Sifter’s error is more than
5 times smaller

than the hierarchical clustering
approach

Side effect: clustering traces

Some other results obtained by Sifter

Adapts over time

Some other results obtained by Sifter

Structure discriminates!

E

DB HG

F

A

C

DB HGA E FC

Adapts over time

Biased trace sampling
What constitutes an “interesting” trace?

Efficient + Scalable

Sifter: a sampler for distributed traces
Use traces to model the system’s behaviors

Low-dimensional probabilistic model forces approximation

Thank you!
Questions?

Sifter: Scalable Sampling for Distributed
Traces, without Feature Engineering

(1)

(2)

(3)

(4)

(5)

(6)

(7) loss

(8) Backpropagation

(9)
Sifter: Scalable Sampling for Distributed Traces, without Feature Engineering
ACM Symposium on Cloud Computing (SoCC), 2019
Pedro Las-Casas, Giorgi Papakerashvili, Vaastav Anand, Jonathan Mace

