
Sifter: Scalable Sampling for 
Distributed Traces, without 

Feature Engineering  

Pedro Las-Casas


with Giorgi Papakerashvili, Vaastav Anand and Jonathan Mace



Sifter: a sampler for distributed traces 
Part of distributed tracing backends 

Problem: too many traces 

Biased trace sampling 
Which traces should we keep?  

Which traces should we discard? 
What constitutes an “interesting” trace? 
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Traces with different execution paths == Traces with different structure

Distributed Trace 
An end-to-end recording of one request

Each request generates a new trace
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Distributed Trace 
An end-to-end recording of one request

Each request generates a new trace
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- Diagnosing latency problems 
- Investigating bugs 
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Trace sampling 
Individual traces can be very detailed 

Tracing every request = too much data 

Uniform random sampling

Traces



Biased Sampling

Adjust sampling probability based on how “interesting” trace is

Uncommon cases 
Infrequently seen 

Interesting

High probability

Common-cases 
Frequently seen 

Not very interesting

Low probability



Biased Sampling

Adjust sampling probability based on how “interesting” trace is
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Sifter: a sampler for distributed 
traces

Part of distributed tracing backends 
Biased trace sampling 

Use traces to model the system’s behaviors 
Low-dimensional probabilistic model forces approximation 



Challenges

Operational requirements 
Continuous operation over a stream of traces 

Low overhead per sampling decision 
Large volume of traces 

What is an interesting trace? 
Lack of standard techniques or metrics 

Feature engineering is undesirable



Differences manifest structurally 
If two traces are conceptually different  

then they will also differ in their  
events, spans, timing, and ordering
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Differences manifest structurally 
If two traces are conceptually different  

then they will also differ in their  
events, spans, timing, and ordering

Sifter’s approach: 
Unsupervised sampling decisions 
Directly on trace data 
No pre-defined high-level features



Sifter: Trace Representation



Sifter: Trace Representation

We rely on the system’s 
source code information for 

the events



Sifter: Trace Representation

We represent our traces as a directed acyclic graph (DAG), 
instead of a span



Sifter: Trace Representation
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We represent our traces as a directed acyclic graph (DAG), 
instead of a span

- Labels aren’t unique 
- Same line of code can  
   execute multiple times



Sifter: Probabilistic Modeling

Traces are examples 
Each trace executes some code paths 

The stream of traces tell us path frequencies 
Use traces to build a probabilistic model 

Unbiased model 
Sifter sees all traces, regardless of sampling decision 

Unbiased model can identify outliers to sample
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Sifter Workflow

(1)

(2)

(3)

Receive trace

Convert it into a DAG

Extract all N-length paths



Sifter Workflow
(1)

(2)

(3)

(4)

(5)

(6)

Use paths as input to Sifter’s model

Sifter’s internal model

Model outputs a prediction of  
the middle event in the path



Sifter Workflow
(1)
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(6)

(7) Loss

(8) Backpropagation
updates model weights 
incorporates new trace

Error between predictions  
labels and actual labels
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Sifter Workflow
(1)

(2)

(3)

(4)

(5)

(6)

(7) loss

(8) Backpropagation

(9)

Unbiased model 
Sifter sees all traces, regardless of sampling decision 

Every trace updates the model 
Unbiased model can identify outliers to sample 

No pretraining necessary



Evaluation

Operational requirements 
Is Sifter fast? 

Does Sifter scale? 

What is an interesting trace? 
Do we detect uncommon and outlier traces? 

Can we manage imbalanced classes? 



Evaluation

DeathStarBench 

social network benchmark

Hadoop Distributed File System

Production traces

Sifter’s implementation using 

Tensorflow



Operational requirements 
Is Sifter fast? 

Does Sifter scale?

Sifter’s internal state is explicitly constrained
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Computational cost depends only on:

(1) number of paths in the trace

(2) number of unique labels in the trace

(N=5)

Sampling latencies range 

from 3 and 20 milliseconds



Replay a stream of traces 
Inject traces from unrepresented / underrepresented classes 

Known features: 
(1) different API types 

(2) parameters to API calls 
(3) known errors / exceptions

Does Sifter detect uncommon and outlier traces?
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Does Sifter detect uncommon and outlier traces?

995 HDFS read API calls              5 HDFS write API calls



How does Sifter manage imbalanced classes?

Production traces - 10,000 traces in 5 different classes
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How does Sifter manage imbalanced classes?

Production traces - 10,000 traces in 5 different classes
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How does Sifter manage imbalanced classes?

Production traces - 10,000 traces in 5 different classes

Mean-squared error
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Sifter’s error is more than  
5 times smaller  

than the hierarchical clustering 
approach



Side effect: clustering traces



Some other results obtained by Sifter

Adapts over time



Some other results obtained by Sifter

Structure discriminates!
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Biased trace sampling 
What constitutes an “interesting” trace? 

Efficient + Scalable 

Sifter: a sampler for distributed traces 
Use traces to model the system’s behaviors 

Low-dimensional probabilistic model forces approximation 



Thank you!  
Questions?  

Sifter: Scalable Sampling for Distributed 
Traces, without Feature Engineering  

(1)

(2)

(3)

(4)

(5)

(6)

(7) loss

(8) Backpropagation

(9)
Sifter: Scalable Sampling for Distributed Traces, without Feature Engineering 
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