
NEPTUNE
Scheduling Suspendable Tasks

for Unified Stream/Batch Applications

SoCC, Santa Cruz, California, November 2019

Panagiotis Garefalakis
Imperial College London

pgaref@imperial.ac.uk

Konstantinos Karanasos
Microsoft

kokarana@microsoft.com

Peter Pietzuch
Imperial College London

prp@imperial.ac.uk

Unified application example

Panagiotis Garefalakis - Imperial College London 2

Inference Job

Low-latency
responses

Trained
Model

Historical
data

Real-time
data

Training Job

Iterate

Stream

Batch Application

Evolution of analytics frameworks

Panagiotis Garefalakis - Imperial College London 3

Batch frameworks

20142010 2018

Frameworks
with hybrid

stream/batch
applicationsStream frameworks

Unified
stream/batch
frameworks

Structured Streaming

Requirements
> Latency: Execute inference job with minimum delay
> Throughput: Batch jobs should not be compromised
> Efficiency: Achieve high cluster resource utilization

Stream/Batch application requirements

Panagiotis Garefalakis - Imperial College London 4

Challenge: schedule stream/batch jobs to
satisfy their diverse requirements

Stream/Batch application scheduling

Panagiotis Garefalakis - Imperial College London 5

2xTInference (stream) Job 2xT

3T TTraining (batch) Job

Stage1

T

Stage2

T
2x 2x

3T3T3T

Stage1

TT

Stage2
4x 3x

Application
Code

Driver

DAG Scheduler

submitApp Context
run job

Stream/Batch application scheduling

Panagiotis Garefalakis - Imperial College London 6

2xTInference (stream) Job 2xT

3T TTraining (batch) Job

3T

3T

3T

T T T T

4T

3T

ex
ec

ut
or

 1
ex

ec
ut

or
 2

8T

T

T

T
Wasted

resourcesC
or

es

2T 6T

Stage1

T

Stage2

T
2x 2x

3T3T3T

Stage1

TT

Stage2
4x 3x

> Static allocation: dedicate resources to each job

Resources can not be shared across jobs

Stream/Batch application scheduling

Panagiotis Garefalakis - Imperial College London 7

2xT 2xT

3T T

4T 8T2T 6T

Stage1

T

Stage2

T
2x 2x

3T3T3T

Stage1

TT

Stage2
4x 3x

> FIFO: first job runs to completion

3T

3T

3T

3T

T

T

T

T T

T

Long batch jobs increase stream job latency

C
or

es

T

Inference (stream) Job

Training (batch) Job
sh

ar
ed

 e
xe

cu
to

rs

Stream/Batch application scheduling

Panagiotis Garefalakis - Imperial College London 8

2xT 2xT

3T T

4T 8T2T 6T

Stage1

T

Stage2

T
2x 2x

3T3T3T

Stage1

TT

Stage2
4x 3x

> FAIR: weight share resources across jobs

C
or

es

3T

3T

3T

3T

T

T

T

T

T

T

T

queuingBetter packing with non-optimal latency

Inference (stream) Job

Training (batch) Job
sh

ar
ed

 e
xe

cu
to

rs

Stream/Batch application scheduling

Panagiotis Garefalakis - Imperial College London 9

2xT 2xT

3T T

4T 8T2T 6T

Stage1

T

Stage2

T
2x 2x

3T3T3T

Stage1

TT

Stage2
4x 3x

> KILL: avoid queueing by preempting batch tasks

C
or

es

3T

3T

3T

3T

T

T

T

T

T

T 3T

T 3T

Better latency at the expense of extra work

Inference (stream) Job

Training (batch) Job
sh

ar
ed

 e
xe

cu
to

rs

Stream/Batch application scheduling

Panagiotis Garefalakis - Imperial College London 10

2xT 2xT

3T T

4T 8T2T 6T

Stage1

T

Stage2

T
2x 2x

3T3T3T

Stage1

TT

Stage2
4x 3x

> NEPTUNE: minimize queueing and wasted work!

C
or

es
Inference (stream) Job

Training (batch) Job
sh

ar
ed

 e
xe

cu
to

rs

3T

3T

3T

3T

T

T

T

T

T

2T

2TT

T

> How to minimize queuing for latency-sensitive jobs
and wasted work?
Implement suspendable tasks

> How to natively support stream/batch applications?
Provide a unified execution framework

> How to satisfy different stream/batch application
requirements and high-level objectives?
Introduces custom scheduling policies

Challenges

Panagiotis Garefalakis - Imperial College London 11

> How to minimize queuing for latency-sensitive jobs
and wasted work?
Implement suspendable tasks

> How to natively support stream/batch applications?
Provide a unified execution framework

> How to satisfy different stream/batch application
requirements and high-level objectives?
Introduces custom scheduling policies

NEPTUNE
Execution framework for Stream/Batch applications

Panagiotis Garefalakis - Imperial College London 12

Support suspendable tasks

Introduce pluggable scheduling policies

Unified execution framework on top of
Structured Streaming

Typical tasks

Panagiotis Garefalakis - Imperial College London 13

Executor
Stack

Task run

Value

Context

Iterator

Function

> Tasks: apply a function to a partition of
data

> Subroutines that run in executor to
completion

> Preemption problem:
> Loss of progress (kill)
> Unpredictable preemption times

(checkpointing)

State

Suspendable tasks

Panagiotis Garefalakis - Imperial College London 14

Function

Context

Iterator

Coroutine
Stack

callyield

> Idea: use coroutines
> Separate stacks to store task

state
> Yield points handing over

control to the executor

> Cooperative preemption:
> Suspend and resume in

milliseconds
> Work-preserving

> Transparent to the user

Executor
Stack

Task run

Value

State

Context

https://github.com/storm-enroute/coroutines

https://github.com/storm-enroute/coroutines

Execution framework

Panagiotis Garefalakis - Imperial College London 15

> Idea: centralized scheduler with pluggable policies

> Problem: not just assign but also suspend and resume

ExecutorExecutor
DAG scheduler

Task Scheduler

Scheduling policy

Executor
Tasks

Low-pri job High-pri job

Running Paused

suspend &
run task

App + job priorities
LowHigh

Tasks

In
cr

em
en

ta
liz

er

O
pt

im
iz

er

launch
task

metrics

Scheduling policies

Panagiotis Garefalakis - Imperial College London 16

> Idea: policies trigger task suspension and resumption
> Guarantee that stream tasks bypass batch tasks
> Satisfy higher-level objectives i.e. balance cluster load
> Avoid starvation by suspending up to a number of times

> Load-balancing (LB): takes into account executors’
memory conditions and equalize the number of tasks
per node

> Locality- and memory aware (LMA): respect task
locality preferences in addition to load-balancing

> Built as an extension to
2.4.0 (https://github.com/lsds/Neptune)

> Ported all ResultTask, ShuffleMapTask functionality
across programming interfaces to coroutines

> Extended Spark’s DAG Scheduler to allow job
stages with different requirements (priorities)

> Added additional Executor performance metrics as
part of the heartbeat mechanism

Implementation

Panagiotis Garefalakis - Imperial College London 17

https://github.com/lsds/Neptune

> Cluster
– 75 nodes with 4 cores and 32 GB of memory each

> Workloads
– LDA: ML training/inference application uncovering

hidden topics from a group of documents
– Yahoo Streaming Benchmark: ad-analytics on a

stream of ad impressions
– TPC-H decision support benchmark

Azure deployment

Panagiotis Garefalakis - Imperial College London 18

DIFF-EXEC FIFO FAIR KILL NEP-CL NEP-LB PRI-ONLY
0

1

2

3

4

5

6
S

tre
am

in
g

la
te

nc
y

(s
)

Benefit of NEPTUNE in stream latency

Panagiotis Garefalakis - Imperial College London 19

> LDA: training (batch) job using all available resources, with
a latency-sensitive inference (stream) using 15% of resources

NEPTUNE achieves latencies comparable to
the ideal for the latency-sensitive jobs

LB
Neptune

LMA
Neptune

IsolationKILLFAIRFIFOStatic
allocation

37%

13%
61%

54%

99th

median

5th

Impact of resource demands in performance

Panagiotis Garefalakis - Imperial College London 20

Past to future
> YSB: increasing stream job resource demands while batch

job using all available resources

0% 20% 40% 60% 80% 100%
Cores used for Streaming

0

2

4

6
S

tre
am

in
g

la
te

nc
y

(s
)

3.85

3.88

3.90

3.92

3.95

B
at

ch
(M

ev
en

ts
/s

)

1.5%

Efficiently share resources with low impact on
throughput

NEPTUNE supports complex unified
applications with diverse job
requirements!

> Suspendable tasks using coroutines
> Pluggable scheduling policies
> Continuous unified analytics

Thank you!
Questions?

Panagiotis Garefalakis
pgaref@imperial.ac.uk

Summary

https://github.com/lsds/Neptune

