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Unified application example

Panagiotis Garefalakis - Imperial College London 2

Inference Job

Low-latency
responses

Trained
Model

Historical 
data

Real-time      
data

Training Job

Iterate

Stream

Batch Application



Evolution of analytics frameworks
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Requirements
> Latency: Execute inference job with minimum delay
> Throughput: Batch jobs should not be compromised
> Efficiency: Achieve high cluster resource utilization

Stream/Batch application requirements
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Challenge: schedule stream/batch jobs to 
satisfy their diverse requirements



Stream/Batch application scheduling
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> Static allocation: dedicate resources to each job

Resources can not be shared across jobs
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> FAIR: weight share resources across jobs
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> KILL: avoid queueing by preempting batch tasks
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> NEPTUNE: minimize queueing and wasted work!
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> How to minimize queuing for latency-sensitive jobs 
and wasted work?
Implement suspendable tasks

> How to natively support stream/batch applications?
Provide a unified execution framework 

> How to satisfy different stream/batch application 
requirements and high-level objectives?
Introduces custom scheduling  policies

Challenges
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> How to minimize queuing for latency-sensitive jobs 
and wasted work?
Implement suspendable tasks

> How to natively support stream/batch applications?
Provide a unified execution framework 

> How to satisfy different stream/batch application 
requirements and high-level objectives?
Introduces custom scheduling  policies

NEPTUNE
Execution framework for Stream/Batch applications
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Support suspendable tasks

Introduce pluggable scheduling  policies

Unified execution framework on top of
Structured Streaming



Typical tasks
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> Tasks: apply a function to a partition of 
data 

> Subroutines that run in executor to 
completion

> Preemption problem: 
> Loss of progress (kill)
> Unpredictable preemption times 

(checkpointing)

State



Suspendable tasks
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> Idea: use coroutines
> Separate stacks to store task 

state
> Yield points handing over 

control to the executor

> Cooperative preemption: 
> Suspend and resume in 

milliseconds
> Work-preserving

> Transparent to the user

Executor
Stack

Task run

Value

State

Context

https://github.com/storm-enroute/coroutines

https://github.com/storm-enroute/coroutines


Execution framework
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> Idea: centralized scheduler with pluggable policies

> Problem: not just assign but also suspend and resume
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Scheduling policies
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> Idea: policies trigger task suspension and resumption
> Guarantee that stream tasks bypass batch tasks
> Satisfy higher-level objectives i.e. balance cluster load
> Avoid starvation by suspending up to a number of times 

> Load-balancing (LB): takes into account executors’ 
memory conditions and equalize the number of tasks 
per node

> Locality- and memory aware (LMA): respect task 
locality preferences in addition to load-balancing



> Built as an extension to                                      
2.4.0 (https://github.com/lsds/Neptune) 

> Ported all ResultTask, ShuffleMapTask functionality 
across programming interfaces to coroutines

> Extended Spark’s DAG Scheduler to allow job 
stages with different requirements (priorities)

> Added additional Executor performance metrics as 
part of the heartbeat mechanism

Implementation
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https://github.com/lsds/Neptune


> Cluster
– 75 nodes with 4 cores and  32 GB of memory each

> Workloads
– LDA: ML training/inference application uncovering 

hidden topics from a group of documents
– Yahoo Streaming Benchmark: ad-analytics on a 

stream of ad impressions
– TPC-H decision support benchmark

Azure deployment
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Benefit of NEPTUNE in stream latency
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> LDA: training (batch) job using all available resources, with 
a latency-sensitive inference (stream) using 15% of resources

NEPTUNE achieves latencies comparable to 
the ideal for the latency-sensitive jobs 
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Impact of resource demands in performance
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Past to future
> YSB: increasing stream job resource demands while batch 

job using all available resources
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NEPTUNE supports complex unified 
applications with diverse job 
requirements!

> Suspendable tasks using coroutines
> Pluggable scheduling policies
> Continuous unified analytics

Thank you!
Questions?

Panagiotis Garefalakis
pgaref@imperial.ac.uk

Summary

https://github.com/lsds/Neptune


