
Pufferfish: Container-driven Elastic Memory 
Management for Data-intensive Applications 

Wei Chen, Aidi Pi, Shaoqi Wang and Xiaobo Zhou
University of Colorado, Colorado Springs



Outline
• Introduction to data-intensive applications

• Memory problems and opportunities

• Pufferfish mechanisms

• Pufferfish architecture

• Evaluation

• Conclusion



Data-intensive applications

• Data analytics applications are extensively used in 
both industry and academia
• Most of the frameworks run on JVM



Data-intensive applications in clusters

• Executor memory is bounded by JVM heap size
• All executors of the same application share the

same configuration
• Memory adjustment cannot be done at runtime

Executor N

JVM
Node N

Executor 1

JVM

Executor 2

JVM
Node 1 …



State-of-the-art
• JVM heap management
• Analysis of data-intensive application behaviors
• Improved garbage collection
• ROLP[Eurosys’19], FACADE[SOSP’15], Yak[OSDI’16]

• Memory elasticity
• Dynamically adjust memory allocation at runtime
• C. Iorgulescu et al. [ATC’17], J. Wang et al. [ATC’17]

• Memory ballooning for virtual machines
• Memory elasticity of virtual machines



Memory problems in clusters

• Garbage collection degrades job 
performance
• Memory under-utilization
• Out of memory error
• Mis-configuration
• Data skew
• Load imbalance
• ...



Illustration of memory problems

• Expensive garbage collection degrades performance
• Heterogeneous memory usage across executors in an 

application



Opportunities
• Memory heterogeneity
• Memory is provisioned for the largest executor of 

the workload
• Memory underutilization for small executors

• Memory Dynamics
• Memory usage is dynamic during execution of a 

executor
• Transient idle memory can be exploited



• Configure executors with a large JVM heap size.
• Configure executors with a small Docker memory limit
• Container-based executor memory management
• Puff (increase) container memory limit on demand
• Suspend an Out-of-Container-Memory container
• Resume a task when memory is available

• A large JVM heap size always presents sufficient
memory to executors
• Executors under memory pressure are swapped into

disks instead of Out-Of-Memory error
• Preserve job progress

Pufferfish mechanisms



Executor suspension and resumption

suspend a task resume a task

• An Out-of-Container-Memory executor incurs extensive disk 
I/O due to swapping
• Heuristic: Suspend the executor by throttling its CPU usage

to 1% when it is out of its container memory

• Tasks under suspension are still alive
• I/O activities are throttled



Pufferfish architecture

• Container monitor
• Performs container suspend and resume operations on FLEX 

containers

• Memory manager
• Decides how much memory should be allocated to each container

• Resource scheduler plugin
• Enforce fairness when taking account of different types of workloads

ResoXrce¬
¬ Manager

ReTXeVW

Application
Master

NRde ManageU

Task
Task
Task

MRQiWRU MePRU\ MaQageU

PR
CRQWaiQeU¬MRQiWRU

NRde ManageU

Task
Task
Task

MRQiWRU MePRU\ MaQageU

PR
CRQWaiQeU¬MRQiWRU

HeaUWbeaW

LaXQch

SchedXOiQg
SOXgiQ



FLEX container

• FLEX container: a type of flexible container

• FLEX containers are set with a large JVM heap size

• FLEX containers are started the same small container
memory limit

• FLEX containers are allowed to puff when its memory
demand is larger than the container memory limit



Container monitor: an example

Host memory
16GB

Host Disk

exec demand

executor 1
2GB

exec demand

executor 2
2GB

• Both executor 1 and executor 2 are configured with
16GB JVM heap and 2 GB container memory limit

• Container memory grows from 2GB with the increase
of executor memory demand



Host Disk

exec demand

executor 2 12GBexecutor 1
4GB

• Container constrains the actual physical memory
• Executor 1 demands 8GB, suspended at 4GB.
• Executor 2 demands 12GB, fully satisfied.

Host memory
16GB

Container monitor: an example



Memory manager

• Address memory contention
• Backoff-based puff
• Increase the container size

according to their priorities
• Kill the container with the lowest

priority when memory is used up

executor 1: 40%

executor 2 : 40%

executor 1: 50%

executor 2: 20%

executor 3: 20%



Pufferfish scheduling plugin

• Scheduling Plugin
• Exposes physical memory usage of each node
• Balances the physical memory usage across nodes

• Prioritization Policies 
• Earliest Job First (EJF) : Puff the earliest submitted

job first
• Shortest Job First (SJF) : Puff the shortest job first



Evaluation setup

• Setup
• 26-node cluster with Ubuntu-16.04
• 32 cores, 128GB RAM, RAID-5 HDDs
• Cluster is connected by 10Gbps Ethernet
• Hadoop-2.7.2, Spark-2.0.1, Docker-1.12.1

• Workloads
• HiBench as batch workloads
• TPC-H on Spark-SQL as latency-critical workloads



Single node

• Workloads: Kmeans and Wordcount
• Pufferfish vs. Yarn with different heap sizes
• Pufferfish achieves the best performance for Kmeans
• Kmeans is dominated by GC and is CPU intensive

• Pufferfish achieves close-optimal performance for Wordcount
• Wordcount is I/O intensive
• Higher parallelism outweighs a larger heap size



Production trace

• Replay a subset of Google trace in the 26-node cluster
• Pufferfish completes all workloads without OOM
• Pufferfish achieves the highest memory utilization

Queuing delay



Mixed workloads

• Workloads
• 38 data-intensive jobs as batch jobs
• 576 TPC-H jobs as latency-critical jobs

• For latency-critical workloads, Pufferfish achieves almost
the same performance as stand-alone execution
• For batch workloads, Pufferfish outperforms default Yarn 

with 64GB heap by adaptive parallelism



Conclusion

• Data-intensive applications suffer from memory
issues OOM and suboptimal memory utilization.
• Pufferfish is an elastic memory manager that leverage
OS containers to achieve dynamical memory
allocation: puff/suspend/reclaim
• Pufferfish can avoid OOM, preserve job performance

and improve cluster memory utilization



Pufferfish: Container-driven Elastic Memory 
Management for Data-intensive Applications 

Wei Chen, Aidi Pi, Shaoqi Wang and Xiaobo Zhou
University of Colorado, Colorado Springs

Thank you!
Q & A


