Pufferfish: Container-driven Elastic Memory
Management for Data-intensive Applications

Wei Chen, Aidi Pi, Shaogi Wang and Xiaobo Zhou

University of Colorado, Colorado Springs

m University of Colorado
Colorado Springs



Outline

* Introduction to data-intensive applications
* Memory problems and opportunities
 Pufferfish mechanisms

* Pufferfish architecture

 Evaluation

* Conclusion



Data-intensive applications

e Data analytics applications are extensively used in
both industry and academia

e Most of the frameworks run on JVIVI

(O POFN.




Data-intensive applications in clusters

e Executor memory is bounded by JVM heap size

 All executors of the same application share the

same configuration

* Memory adjustment cannot be done at runtime
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State-of-the-art

 JVM heap management E:g) Java

* Analysis of data-intensive application behaviors
* Improved garbage collection

* ROLP[Eurosys’19], FACADE[SOSP’15], Yak[OSDI'16]

 Memory elasticity m

* Dynamically adjust memory allocation at runtime
e C. lorgulescu et al. [ATC’17], J. Wang et al. [ATC’17]

 Memory ballooning for virtual machines
* Memory elasticity of virtual machines



Memory problems in clusters

* Garbage collection degrades job
performance

* Memory under-utilization

e Out of memory error
* Mis-configuration
e Data skew
* Load imbalance

................................




lllustration of memory problems

(a) Impact of JVM heap (b) Executor memory usage

I T 70 T
3000 -t v |EEE spark-kmeans-ex 60—- Pagerank 50th o L L Nl P
2500_”5 ...... '-'I ........... .....|C3 mapreduce-terasort-exe|| @ EEE Pagerank-90th I f I
~—~ : : vl | B spark-p erglnk exe : . : ; | -
L 2000f - 1.l §|----|--§-gl---- =3 gc |
I N T Y —— z . »
£ 15001 | I I |
= 1000 - |_{§ ||_§'II SEL EEREE B AEe B
500--H----¥...'+ ....... | i D 1 . 1 -
; . = - -
oLL ﬂ ] a ' '
4 8 16 32 64
JVM heap size (GB) Executor number (#)

* Expensive garbage collection degrades performance

e Heterogeneous memory usage across executors in an
application




Opportunities

* Memory heterogeneity

 Memory is provisioned for the largest executor of
the workload

* Memory underutilization for small executors

* Memory Dynamics

* Memory usage is dynamic during execution of a
executor

* Transient idle memory can be exploited



Pufferfish mechanisms

* Configure executors with a large JVM heap size.
* Configure executors with a small Docker memory limit

* Container-based executor memory management
e Puff (increase) container memory limit on demand
e Suspend an Out-of-Container-Memory container
* Resume a task when memory is available

* Alarge JVM heap size always presents sufficient
memory to executors
e Executors under memory pressure are swapped into
disks instead of Out-Of-Memory error
* Preserve job progress



Executor suspension and resumption

* An Out-of-Container-Memory executor incurs extensive disk
/O due to swapping

* Heuristic: Suspend the executor by throttling its CPU usage
to 1% when it is out of its container memory
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* Tasks under suspension are still alive
* |/O activities are throttled



Pufferfish architecture
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e Container monitor

* Performs container suspend and resume operations on FLEX
containers

* Memory manager
* Decides how much memory should be allocated to each container

* Resource scheduler plugin
* Enforce fairness when taking account of different types of workloads



FLEX container

* FLEX container: a type of flexible container
* FLEX containers are set with a large JVM heap size

e FLEX containers are started the same small container
memory limit

* FLEX containers are allowed to puff when its memory
demand is larger than the container memory limit



Container monitor: an example
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* Both executor 1 and executor 2 are configured with
16GB JVM heap and 2 GB container memory limit

e Container memory grows from 2GB with the increase
of executor memory demand



Container monitor: an example
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e Container constrains the actual physical memory
e Executor 1 demands 8GB, suspended at 4GB.
e Executor 2 demands 12GB, fully satisfied.



Memory manager

e Address memory contention
* Backoff-based puff

* Increase the container size
according to their priorities

* Kill the container with the lowest
priority when memory is used up
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Pufferfish scheduling plugin

e Scheduling Plugin
* Exposes physical memory usage of each node
* Balances the physical memory usage across nodes

* Prioritization Policies

 Earliest Job First (EJF) : Puff the earliest submitted
job first

* Shortest Job First (SJF) : Puff the shortest job first



Evaluation setup

* Setup
e 26-node cluster with Ubuntu-16.04
e 32 cores, 128GB RAM, RAID-5 HDDs
 Cluster is connected by 10Gbps Ethernet
 Hadoop-2.7.2, Spark-2.0.1, Docker-1.12.1
* Workloads
* HiBench as batch workloads
* TPC-H on Spark-SQL as latency-critical workloads



Single node

(b) Wordcount

(a) Kmeans
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 Workloads: Kmeans and Wordcount
* Pufferfish vs. Yarn with different heap sizes

e Pufferfish achieves the best performance for Kmeans
* Kmeans is dominated by GC and is CPU intensive

e Pufferfish achieves close-optimal performance for Wordcount
 Wordcount is I/O intensive
* Higher parallelism outweighs a larger heap size



Production trace
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* Replay a subset of Google trace in the 26-node cluster

 pufferfish completes all workloads without OOM

» Pufferfish achieves the highest memory utilization



Mixed workloads

(@) TPC-H jobs (b) Data-intensive jobs
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* Workloads
» 38 data-intensive jobs as batch jobs
576 TPC-H jobs as latency-critical jobs

e For latency-critical workloads, Pufferfish achieves almost
the same performance as stand-alone execution

* For batch workloads, Pufferfish outperforms default Yarn
with 64GB heap by adaptive parallelism



Conclusion

* Data-intensive applications suffer from memory
issues OOM and suboptimal memory utilization.

 Pufferfish is an elastic memory manager that leverage
OS containers to achieve dynamical memory
allocation: puff/suspend/reclaim

e Pufferfish can avoid OOM, preserve job performance
and improve cluster memory utilization
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