Pufferfish: Container-driven Elastic Memory
Management for Data-intensive Applications

Wei Chen, Aidi Pi, Shaogi Wang and Xiaobo Zhou

University of Colorado, Colorado Springs

m University of Colorado
Colorado Springs

Outline

* Introduction to data-intensive applications
* Memory problems and opportunities
 Pufferfish mechanisms

* Pufferfish architecture

 Evaluation

* Conclusion

Data-intensive applications

e Data analytics applications are extensively used in
both industry and academia

e Most of the frameworks run on JVIVI

(O POFN.

Data-intensive applications in clusters

e Executor memory is bounded by JVM heap size

 All executors of the same application share the

same configuration

* Memory adjustment cannot be done at runtime

Node 1

JIVM

IVM

Executor 1

Executor 2

Node N

VM

Executor N

State-of-the-art

 JVM heap management E:g) Java

* Analysis of data-intensive application behaviors
* Improved garbage collection

* ROLP[Eurosys’19], FACADE[SOSP’15], Yak[OSDI'16]

 Memory elasticity m

* Dynamically adjust memory allocation at runtime
e C. lorgulescu et al. [ATC’17], J. Wang et al. [ATC’17]

 Memory ballooning for virtual machines
* Memory elasticity of virtual machines

Memory problems in clusters

* Garbage collection degrades job
performance

* Memory under-utilization

e Out of memory error
* Mis-configuration
e Data skew
* Load imbalance

................................

lllustration of memory problems

(a) Impact of JVM heap (b) Executor memory usage

I T 70 T
3000 -t v |EEE spark-kmeans-ex 60—- Pagerank 50th o L L Nl P
2500_”5 '-'I|C3 mapreduce-terasort-exe|| @ EEE Pagerank-90th I f I
~—~ : : vl | B spark-p erglnk exe : . : ; | -
L 2000f - 1.l §|----|--§-gl---- =3 gc |
I N T Y —— z . »
£ 15001 | I I |
= 1000 - |_{§ ||_§'II SEL EEREE B AEe B
500--H----¥...'+ | i D 1 . 1 -
; . = - -
oLL ﬂ] a ' '
4 8 16 32 64
JVM heap size (GB) Executor number (#)

* Expensive garbage collection degrades performance

e Heterogeneous memory usage across executors in an
application

Opportunities

* Memory heterogeneity

 Memory is provisioned for the largest executor of
the workload

* Memory underutilization for small executors

* Memory Dynamics

* Memory usage is dynamic during execution of a
executor

* Transient idle memory can be exploited

Pufferfish mechanisms

* Configure executors with a large JVM heap size.
* Configure executors with a small Docker memory limit

* Container-based executor memory management
e Puff (increase) container memory limit on demand
e Suspend an Out-of-Container-Memory container
* Resume a task when memory is available

* Alarge JVM heap size always presents sufficient
memory to executors
e Executors under memory pressure are swapped into
disks instead of Out-Of-Memory error
* Preserve job progress

Executor suspension and resumption

* An Out-of-Container-Memory executor incurs extensive disk
/O due to swapping

* Heuristic: Suspend the executor by throttling its CPU usage
to 1% when it is out of its container memory

()Memory & swappmg
~ 10— T 2000 —~
o) 1 : XXx read i 0
O O0F - tog oo write| g o
v 50 % rrrrrrr 415002
o okdeee K |
Q 40F """""""""""""""""""""""" %
530l e85 L hy i i {1000 &
> 8 D 2
— "r.(
O 20| ---00a5 @08 ;... =
T 10f Q@B Lo v
N Y i e) &ﬁn_o =
200 300 430 500 600 700 800900 10001100
Time (s)
suspend a task resume a task

* Tasks under suspension are still alive
* |/O activities are throttled

Pufferfish architecture

Node Manager

Resource |schedulin)
9| |lg---.__ Monitor, M M
[Manager [Plugin . » r emory Manager|

. Task
* R Task PR
Heartbeat Task <—| Container Monitor |

Request

: : \\ \\ Node Manager
Application rMonitor_ E———
Master
Launch Task)
Task
Task &| Container Monitor |

e Container monitor

* Performs container suspend and resume operations on FLEX
containers

* Memory manager
* Decides how much memory should be allocated to each container

* Resource scheduler plugin
* Enforce fairness when taking account of different types of workloads

FLEX container

* FLEX container: a type of flexible container
* FLEX containers are set with a large JVM heap size

e FLEX containers are started the same small container
memory limit

* FLEX containers are allowed to puff when its memory
demand is larger than the container memory limit

Container monitor: an example

4 N\ 4 N\
exec demand exec demand
executor1 |- executor 2 Host memory
2GB E E 2GB 16GB

Host Disk

* Both executor 1 and executor 2 are configured with
16GB JVM heap and 2 GB container memory limit

e Container memory grows from 2GB with the increase
of executor memory demand

Container monitor: an example

-

exec demand

executor 1
/)]P

. Swapping! -

executor 2 12GB Host memory
16GB

Host Disk

e Container constrains the actual physical memory
e Executor 1 demands 8GB, suspended at 4GB.
e Executor 2 demands 12GB, fully satisfied.

Memory manager

e Address memory contention
* Backoff-based puff

* Increase the container size
according to their priorities

* Kill the container with the lowest
priority when memory is used up

executor 1: 40%

l executor 2 : 40%

|

executor 3: 20%

executor 2: 20%

executor 1: 50%

Pufferfish scheduling plugin

e Scheduling Plugin
* Exposes physical memory usage of each node
* Balances the physical memory usage across nodes

* Prioritization Policies

 Earliest Job First (EJF) : Puff the earliest submitted
job first

* Shortest Job First (SJF) : Puff the shortest job first

Evaluation setup

* Setup
e 26-node cluster with Ubuntu-16.04
e 32 cores, 128GB RAM, RAID-5 HDDs
 Cluster is connected by 10Gbps Ethernet
 Hadoop-2.7.2, Spark-2.0.1, Docker-1.12.1
* Workloads
* HiBench as batch workloads
* TPC-H on Spark-SQL as latency-critical workloads

Single node

(b) Wordcount

(a) Kmeans

= \ ‘ c 3.0 1

S B - [Co4 mm 166 mmedcl| I | [T 4 == 166 = 6o
T N R |zzmsc = 3G mmPF || W 2.5 o lemsc mmm 326 mmm PR
v . ‘ : : : : :

o —

E4f R R

© Lk

CIJ3

N

= 2+ - KM

©

Sl Iy

O

20

Concurrent runs Concurrent runs

 Workloads: Kmeans and Wordcount
* Pufferfish vs. Yarn with different heap sizes

e Pufferfish achieves the best performance for Kmeans
* Kmeans is dominated by GC and is CPU intensive

e Pufferfish achieves close-optimal performance for Wordcount
 Wordcount is I/O intensive
* Higher parallelism outweighs a larger heap size

Production trace

1.0——m==r !
(18—--§~~~§ iy ‘A _
S Quefiing d¢
(| : :
B 06_1
@) oy
0.4 - :.é.\' : - 16g
£/ 329
0.2f i 64
4 : : . . PF
00 ';" | 1 l l 1 I I
0O 2 4 6 8 10 12 14 16

Normalized runtime

ay

1 i 1 1 - ety

' ‘ : s A

: : : L O :

: ‘ NS :

e g el L.

I A O 5

5 S & z
....... [":,_

: B Y '

/ A B 89
....... ,6 -

/- ; 169

A - . .

P : 329
"""" R 2NNt PR A 64q

- .
2/ o= : PF
TR | | 1 I

10 20 30 40 50

Usage (%)

* Replay a subset of Google trace in the 26-node cluster

 pufferfish completes all workloads without OOM

» Pufferfish achieves the highest memory utilization

Mixed workloads

(@) TPC-H jobs (b) Data-intensive jobs

1.0

T i R R S S e
/ .)) . — PF

i J J J ; [
1 2 3 4 5 6 7
Normalized time

* Workloads
» 38 data-intensive jobs as batch jobs
576 TPC-H jobs as latency-critical jobs

e For latency-critical workloads, Pufferfish achieves almost
the same performance as stand-alone execution

* For batch workloads, Pufferfish outperforms default Yarn
with 64GB heap by adaptive parallelism

Conclusion

* Data-intensive applications suffer from memory
issues OOM and suboptimal memory utilization.

 Pufferfish is an elastic memory manager that leverage
OS containers to achieve dynamical memory
allocation: puff/suspend/reclaim

e Pufferfish can avoid OOM, preserve job performance
and improve cluster memory utilization

Pufferfish: Container-driven Elastic Memory
Management for Data-intensive Applications

Wei Chen, Aidi Pi, Shaogi Wang and Xiaobo Zhou
University of Colorado, Colorado Springs

m University of Colorado
Colorado Springs

Thank you!
Q&A

