
pRedis: Penalty and Locality Aware
Memory Allocation in Redis
Cheng Pan,

Yingwei Luo, Xiaolin Wang

Dept. of CS, Peking University,
Peng Cheng Laboratory,

ICNLAB, Peking University

Zhenlin Wang

Dept. of Computer Science,
Michigan Technological University 

P
E
K
I
N

G
U N I V E R

S
I
T
Y

1 8 9 8

1



Outline

• Background
• Motivation Example
• pRedis: Penalty and Locality Aware Memory Allocation
• Long-term Locality Handling
• Evaluation
• Conclusion

2



Background

• In modern web services, the use of KV cache often help improve
service performance.
• Redis
• Memcached

3



Background

Hardware Cache

Key-Value Cache

Recency-based policy:
LRU, Approx-LRU

Recency-based policy:
LRU, Approx-LRU

Hidden assumption:
miss penalty is uniform

Not correct in KV Cache

small strings, big images,
static pages, dynamic pages,
from remote server, from
local computation, etc.Not efficient

4



Penalty Aware Policies

• The issue of miss penalty has drawn widespread attention:
• GreedyDual [Young’s PhD thesis, 1991]
• GD-Wheel [EuroSys’15]
• PAMA [ICPP’15]
• Hyperbolic Caching [ATC’17]

• Hyperbolic Caching (HC) delivers a better cache replacement scheme.
• combines the miss penalty, access count and residency time of data item.
• shows its advantage over other schemes on request service time. 
• but it is short of a global view of access locality 

request count

residency time 

cost (or miss penalty)

5



Outline

• Background
• Motivation Example
• pRedis: Penalty and Locality Aware Memory Allocation
• Long-term Locality Handling
• Evaluation
• Conclusion

6



Motivation Example

• We define the miss penalty as the time interval between the miss of a 
GET request and the SET of the same key immediately following the 
GET.

Access rates of these three 
classes are 5 : 3 : 2.

Combined trace.

Assume that each item’s hit time is 1 ms, and the total memory size is 5. 
7



Motivation Example – LRU Policy

Every access to class 1 will be a hit (except first 2 access).
Other accesses to class 2 and class 3 will all be misses.
Average request latency = 0.5∗1 + 0.3∗(200+1) + 0.2∗(200+1) = 101 ms.

8



Motivation Example – HC Policy

class 3

The elements in class 1 are chosen to evict except for their first load. 
The newest class 3 elements stay in cache even there is no reuse.
Average request latency = 0.5 ∗ (10 + 1) + 0.3 ∗ 1 + 0.2 ∗ (200 + 1) = 46 ms

9



Motivation Example – pRedis Policy

• Key Problems:
• LRU: doesn’t consider miss penalty (e.g. class 2, class 3)
• HC: doesn’t consider locality (e.g. class 3)

• We combine Locality (Miss Ratio Curve, MRC) and Miss Penalty.

W = 0.5∗mr1(c1)∗10+0.3∗mr2(c2)∗200+0.2∗mr3(c3)∗200, s.t. c1+c2+c3 = 5 

c1 =2, c2=3, c3=0, Wmin=40,
average request latency = 0.5 ∗ 1 + 0.3 ∗ 1 + 0.2 ∗ (200 + 1) = 41 ms

10

*



Outline

• Background
• Motivation Example
• pRedis: Penalty and Locality Aware Memory Allocation
• Long-term Locality Handling
• Evaluation
• Conclusion

11



pRedis: Penalty and Locality Aware Memory Allocation

• In pRedis design, a workload can be divided into a series of 
fixed-size time windows (or phases). In a time window:

Miss Penalty
Tracking

Class
Decision

Trace
Tracking

MRC
Construction

Memory
reallocation

Generate sub-
trace for each
class

Use EAET
Model

Use dynamic
programming

Divide penalty
into classes

Track miss
penalty

12

During the time window At the end of each time window



pRedis System Design

EAET ModelPenalty Class ID
Filter

Class Memory
Allocation

13



pRedis – Penalty Class ID Filter

• Track the miss penalty for each KV.
• Divide them into different classes.
• But how to maintain these information efficiently?
• store an additional field for each stored key? too costly!

1 million keys
Pr(false positive) = 0.01

Overhead: 1 MB

14



pRedis – Penalty Class ID Filter

• Two different ways to decide the Penalty Class ID:
• 1) Auto-detecting: pRedis(auto)
• set the range of each penalty class in advance.
• each KV will be automatically assigned to the class it belongs to based on the 

measured miss penalty. 

• 2) User-hinted: pRedis(hint)
• provides an interface for user to specify the class of an item.
• aggregates the latency of all items of a penalty class in a time period. 

15



pRedis – EAET Model

• Enhanced AET (EAET) model is a cache locality model (APSys 2018):
• support read, write, update, deletion operations
• support non-uniform object sizes

Input: KVs access
workload

EAET
Modeling

Output: Miss Ratio
Curve (MRC)

16

SET key1 123
GET key1
SET key2 “test”
GET key2
...



pRedis – Class Memory Allocation

• If we allocate penalty class 𝑖 with 𝑀$ memory units, then this class’s 
overall miss penalty (or latency) 𝑀𝑃$ can be estimated as: 

• Our final goal:

access count

average miss penaltymiss rate given
memory size 𝑀$

Dynamic programming to obtain the optimal memory
allocation: enforced through object replacements. 17



Outline

• Background
• Motivation Example
• pRedis: Penalty and Locality Aware Memory Allocation
• Long-term Locality Handling
• Evaluation
• Conclusion

18



Long-term Locality Handling

Periodic Pattern: The number of 
requests changes periodically over time, 
and the long-term reuse is accompanied
by the emergence of request peaks. 

Non-Periodic Pattern: The number of 
requests remains relatively stable over 
time, or there are no long-term reuses. 

19



Auto Load/Dump Mechanism 

• Obviously, when these two types of workloads share Redis,
• with the LRU strategy, the memory usage of the two types of data will change 

during the access peaks and valleys. 
• the passive evictions during the valley periods and the passive loadings 

(because of GET misses) during the peak periods will cause considerable 
latency. 

• Auto load/dump mechanism
• Proactively dump some of the memory to a local SSD (or hard drives) when a 

valley arrives.
• Proactively load the previously dumped content before arrival of a peak. 

20



Outline

• Background
• Motivation Example
• pRedis: Penalty and Locality Aware Memory Allocation
• Long-term Locality Handling
• Evaluation
• Conclusion

21



Experimental Setup

• We evaluate pRedis and other strategies using six cluster nodes. 
• Each node: Intel(R) Xeon(R) E5-2670 v3 2.30GHz processor with 

30MB shared LLC and 200 GB of memory, the OS is Ubuntu 16.04 
with Linux-4.15.0. 

22



Latency – Experimental Design

• We use the MurmurHash3 function to randomly distribute the data to 
two backend MySQL servers, one local and one remote. 
• access latency are ~120 μs and ~1000 μs, respectively.

• We set a series of ranges, [1μs, 10μs), [10μs, 30μs), [30μs, 70μs), ..., 
[327670μs, 655350μs), 16 penalty classes in total. 

• Additionally, in order to compare two different variants of pRedis, we 
run a stress test (mysqlslap) in the remote MySQL server after the 
workload reaches 40% of the trace.
• causing the remote latency to rise from ~1000 μs to ~2000 μs. 

23



Latency – YCSB Workload A

pRedis(auto) is 34.8% and 20.5% lower than Redis and Redis-HC,
pRedis(hint) cuts another 1.6%. 

24



Latency

• We summarize the average 
response latency of the six 
YCSB workloads in the
right figure.

• pRedis(auto) vs. Redis-HC:
12.1% ∼ 51.9%.
• pRedis(hint) vs. Redis-HC:

14.0% ∼ 52.3%.

25



Tail Latency

• YCSB Workload A
• using pRedis(hint)
• 0~99.99%: pRedis are the 

same as or lower than Redis 
and Redis-HC. 
• 99.999%~99.9999%: three 

methods have their pros and 
cons. 
• next 0.00009%: pRedis

performs better than others.
26



Auto Dump/Load in Periodic Pattern

• We use two traces from the collection of Redis traces
• one trace has periodic pattern (the e-commerce trace), 
• the other has non-periodic pattern (a system monitoring service trace). 

• The data objects are also distributed to both the local and remote 
MySQL databases. Remote access pause Remote access pause

access thrash

27



Auto Dump/Load in Periodic Pattern

• In general, the use of 
auto-dump/load can 
smooth the access latency 
caused by periodic 
pattern switching.
• pRedis(with d/l) vs.

Redis-HC: 13.3%
• pRedis(with d/l) vs.

pRedis(without d/l):
8.4%

28



Overhead
Time Overhead Space Overhead

RTH sampling time takes about 0.01% of access time,
MRC construction and re-allocation DP occur at the 
end of each phase (in minutes), that’s negligible.

working set is 10 GB (using YCSB Workload A),
total space overhead is 25.08 MB, 0.24% of the total 
working set size, that’s acceptable. 29



Outline

• Background
• Motivation Example
• pRedis: Penalty and Locality Aware Memory Allocation
• Long-term Locality Handling
• Evaluation
• Conclusion

30



Conclusion

• We have presented a systematic design and implementation of pRedis:
• A penalty and locality aware memory allocation scheme for Redis.
• It exploits the data locality and miss penalty, in a quantitative manner, to guide 

the memory allocation in Redis.

• pRedis shows good performance:
• It can predict MRC for each penalty class with a 98.8% accuracy and has the 

ability to adapt the phase change.
• It outperforms a state-of-the-art penalty aware cache management scheme, HC, 

by reducing 14∼52% average response time. 
• Its time and space overhead is low.

31



Thanks for your attention !
Q &A

pancheng@pku.edu.cn

32



Workloads

• MSR Workloads
• One week of block I/O traces from the Microsoft Research Cambridge 

Enterprise servers

• YCSB Workloads
• A framework and common set of workloads for evaluating the performance of 

different "key-value" and "cloud" serving stores. 
• A Collection of Real-world Redis Workloads
• They are obtained from a set of Redis servers used for E-commerce, cluster 

performance monitoring, and other services. 
• Memtier Benchmark
• A high throughput benchmarking tool for Redis and Memcached. 

33



MRC Accuracy

• pRedis relies on accurate MRCs. 
• We compare the pRedis MRC, 

obtained by EAET using 1% set 
sampling, with the actual MRC, 
obtained by measuring the full-
trace reuse distances. 

• The average absolute error of 
EAET is 1.2%, which is accurate 
enough. 

34



Throughput – Worst Case

• A stress test using Memtier benchmark 
• The memory-limit is set to ∞, so all of the GET queries will be hits. 
• We setup 2 to 10 threads to send requests, each thread will drive 50 

clients, each client send 1000000 requests total. The ratio of SET and 
GET is 1:10, and default data size is 32 bytes. 

Table: pRedis vs. Redis on Throughput 

The average degradation is only 1.5% 
35


