RapidCDC: Leveraging Duplicate Locality
to Accelerate Chunking in CDC-based Deduplication

Fan Ni* Song Jiang
fan@netapp.com song.jiang@uta.edu
ATG, NetApp UT Arlington
N
214
TEXAS
NetApp ARLINGTON

ACM Symposium
* The work was done when he was a Ph.D. student at UT Arlington smcg on Cloud Computing

Data is Growing Rapidly

180

160

140

120

100

80

Zettabytes

60

40

20

. Data created

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

From storagenewsletter.com

= Many of the data needs to be stored for preservation and processing.
= Efficient data storage and management has become a big challenge.

The Opportunity: Data Duplication is Common

= Sources of duplicate data:
— The same files are stored by multiple users into the cloud.
— Continuously updating of files to generate multiple versions.
— Use of checkpointing and repeated data archiving.

= Significant data duplication has been observed for both
backup and primary storage workloads.

When duplication is detected Only one copy is stored:

The Deduplication Technique can Help
(using fingerprinting):

B
sum(% =SHA1(=) File

File2 = aes

= Benefits

— Storage space
— 1/O bandwidth
— Network traffic

= An important feature in commercial storage systems.
— NetApp ONTAP system

— Dell-EMC Data Domain system

= Two critical issues:
— How to deduplicate more data?
— How to deduplicate faster?

Deduplicate at Smaller Chunks ...

o

—
Chunking and --D- Remove E
fingerprinting - :'.. duplicate chunks

... for higher deduplication ratio

= Two potentially major sources of cost in the deduplication:
— Chunking

— Fingerprinting
= Can chunking be very fast?

Fixed-Size Chunking (FSC)

FSC.: partition files (or data streams) into equal- and fixed-
sized chunks.

— Very fast!

But the deduplication ratio can be significantly compromised.
— The boundary-shift problem.

File A | HOWAREYOU?OK?REALLY?YES?NO
| RYARVARVARVAIVARv A4
FileB | HOWAREYOU?OK?REALLY2YES?NO

Fixed-Size Chunking (FSC)

= FSC: partition files (or data streams) into equal- and fixed-
size chunks.

— Very fast!

= But the deduplication ratio can be significantly compromised
— The boundary-shift problem.

File A | HOWAREYOU?0K?REALLY2YES?NO
XX X XX X X

FileB | HHOWAREYOU?OK?REALLY?YES?NO

Content-Defined Chunking (CDC)

CDC.: determines chunk boundaries according to

contents (a predefined special marker).
— Variable chunk size.
— Addresses boundary-shift problem

File A

File B

Assume the special marker is “?’

HOWAREYOU?OK?REALLY?YES?NO

X VeV Vv

HHOWAREYOUZO0K?REALLY2YESZNO

The Advantage of CDC

|[mmE cDC B FSC

-.l-l.l.&l-l

éoc}“ $e°

o

W >
) D (e}
I I

o
I

= = [\) [\) DO w
[@)) (e} IS
I I

Deduplication ratio
[N}

(e} =~ oo
I

6@\6

(e,
OO%\Q \/\(\\) @O(6Q

= Real-world datasets include two-week’s google news, Linux kernels,
and various Docker images.

= CDC'’s deduplication ratio is much higher than FSC.
= However, CDC can be very expensive. 9

CDC can be Too Expensive!

Assume the special marker is “?’

File A | HOWAREYOU?OK?REALLY?ZYES?NO

FileB |HHOWAREYOU?OKZ2REALLY2YES?ZNO

= The marker for identifying chunk boundaries must
— be evenly spaced out with a controllable distance in between.

= Actually the marker is determined by applying a hash
function on a window of bytes.

— E.g., hash(“YOU?”) == pre-defined-value

= The window rolls forward byte-by-byte and the hashlng IS
applied continuously.

CDC Chunking Becomes a Bottleneck

Breakdown of CPU time

100

Fingerprinting e——p-

Chunking

Linux-tar
dr=4.06

= Chunking time > 60% of the CPU time.
= |/O bandwidth is not fully utilized.
= The bottleneck shifts from the disk to CPU.

11

CDC Chunking Becomes a Bottleneck

Breakdown of CPU time Breakdown of IO time

100

Fingerprinting cm——p ;
" | p€==1/0 Idle
X 60
=
=
Chunking < i
| == 1/O Busy
20 X
0 —
Linux-tar
dr=4.06

= Chunking time > 60% of the CPU time.
= |/O bandwidth is not fully utilized.
= The bottleneck shifts from the disk to CPU.

12

CDC Chunking Becomes a Bottleneck

Breakdown of CPU time Breakdown of IO time

100

Fingerprinting cm—p ;
" . p&==1/O Idle
X 60
&}
s .
Chunking 55
| == 1/O Bus
20 :
. |
Linux-tar Redis Neo4]
dr=4.06 dr=7.17 dr=19.04

= Chunking time > 60% of the CPU time.
= |/O bandwidth is not fully utilized.
= The bottleneck shifts from the disk to CPU.

13

Efforts on Acceleration of CDC Chunking

= Make hashing faster
— Example functions: SimpleByte, gear, and AE

— More likely to generate small chunks
* increasing size of metadata cached in memory for performance

= Use GPU/multi-core to parallelize the chunking process
— Extra hardware cost
— Substantial efforts to deploy
— The speedup is bounded by hardware parallelism.

= Significant software/hardware efforts, but limited
performance return

14

We proposed RapidCDC that ...

= s still sequential and doesn’t require additional
cores/threads.

= makes the hashing speed almost irrelevant.
= accelerates the CDC chunking often by 10-30 times.
= has a deduplication ratio the same as regular CDC methods.

= can be adopted in an existing CDC deduplication system by
adding 100~200 LOC in a few functions.

15

The Path to the Breakthrough

Unique Chunks
in the Disk

The Path to the Breakthrough

Fingerprint
Matched!
N
N
\ 4
]]

The Path to the Breakthrough

' m

Confirm it! l

Fingerprint

Matched !

15KB

—> ——
I

The Path to the Breakthrough

Il _ él

Fingerprint

Matched!

The Path to the Breakthrough

Y

Fingerprint

Matched !

The Path to the Breakthrough

'

Fingerprint Fingerprint
Matched ! Matched !

The Path to the Breakthrough

_ %" |%

=
~_ LN

s

7KB 20KB

| 16KB
Fingerprint Fingerprint Fingerprint

Matched ! Matched ! Matched !

The Path to the Breakthrough

i N %)

v

%

Fingerprint Fingerprint Fingerprint Fingerprint
Matched ! Matched ! Matched ! Matched !

Fingerprint almost always happens ! 9
Matched !

Duplicate Locality

- Duplicate locality: if two of chunks are duplicates, their next chunks (in their
respective files or data stream) are likely duplicates of each other.

- Duplicate chunks tend to stay together.

All duplicate chunks

100
S 80
(]
=
C
Z 60- . : .
5 Duplicate chunk immediately
o following another duplicate chunk
&0 401
S
C
O
5 201
(ol

) — . . .
10 20 40 80 90 24

of files (Debian)

Percentage of chunks (%)

Percentage of chunks (%)

Duplicate Locality

- Duplicate locality: if two of chunks are duplicates, their next chunks (in their
respective files or data stream) are likely duplicates of each other.
- Duplicate chunks tend to stay together.
100 100 100
" 3 S N
e,) 2
g g g
60+ = = 601 - 60
N e e o
o o o
e A S * | o [5) | 5}
407 & En Eo 40 ED 40
g g g
904 —— Duplicate chunks g —— Duplicate chunks g 904 —— Duplicate chunks g 90/ —— Duplicate chunks
--—- Duplicate chunks in LQ sequences ¥ ---- Duplicate chunks in L@ sequences ¥ ---- Duplicate chunks in LQ) sequences a8 --—- Duplicate chunks in LQ sequences
0 0 0 0 -
10 20 40 80 209 10 20 40 80 90 10 20 40 80 140 10 20 40 80 1567
of files # of files # of files # of files
(a) Linux-tar (b) Debian (c) Neo4j (d) Nodejs
100 100 100 100
ol £ g £ ol €
_E [e TTTTTTTTTTTTT * _‘é’ _55
601 ol f £ o] g o
= “) g <+ -
401 & 40 S 401 S 40
904 —— Duplicate chunks g 904 —— Duplicate chunks g 90 —— Duplicate chunks g 90| — Duplicate chunks
---- Duplicate chunks in LQ) sequences al =-+=- Duplicate chunks in LQ) sequences ~ ===~ Duplicate chunks in LQ sequences a8 --—- Duplicate chunks in LQ sequences
10 20 40 80 501 5 10 20 30 40 5 10 20 30 34 2 4 6 8 14
of files # of files # of files # of il S
(e) Wordpress (f) Cassandra () Redis (h) Google-news

RapidCDC: Using Next Chunk in History as a Hint

= History recording: whenever a chunk is detected, its size is attached to
its previous chunk (fingerprint);

= Hint-assisted chunking: whenever a duplication is detected, use the
history chunk size as a hint for the next chunk boundary.

When FP(B1) == FP(A1):

Offset in file: Py P, P, Ps Py
+SZ= +s3= +s4= I
FileB 1__.._ | B B, B, B, | __ . __l
—
e e em = om— o e —— — — — — — —
Flle A |_ — <FP1 S>> <FP2 S3> <FP3 S4= <FP4 e T
A A, A; Ay

= Regular CDC is used for chunking until a duplicate chunk
(e.g., B4) is found

26

More Design Considerations ...

= A chunk may have been followed with chunks of
different sizes
— Maintain a size list

= Validation of Hinted Next Chunk Boundaries

— Four alternative criterions with different efficiency and
confidences
» FF (fast-forwarding only)
» FF+RWT (Rolling window Test)
» FF+MT (Marker Test)
» FF+RWT+FPT (Fingerprint Test)

= Please refer to the paper for detail. 27

Evaluation of RapidCDC

= Prototype: based on a rolling-window-based CDC system.
— Using Rabin/Gear as rolling function for rolling window computation.
— Using SHA1 to calculate fingerprints.

= Three disks with different speed are tested.
— SATA Hard disk: 138 MB/s and 150MB/s for sequential read/write.
— SATA SSD: 520 MB/s and 550MB/s for sequential read/write.

— NVMe SSD: 1.2 GB/s and 2.4G/s for sequential read/write.

28

Synthetic Datasets: Insert/Delete

FF4+RWT+FPT
FF+RWT

FF+MT
FF

I0R1

Speedup

Deduplication ratio
o = N loo [N at (@) ~
/(NS

™

1000

oW/ / /SRS

0 2000 5000 10000 20000

of modifications

10

200

QWL / /[N

500

v/ /S]]

VI

0 1

Regular
FF+RWT+FPT
FE+RWT
FEF+MT

FF

0000 20000

of modifications

= Chunking speedup correlates to the deduplication ratio.
= Deduplication ratio is little affected (except for one very

aggressive validation criterion).

29

Real-world Datasets: Chunking Speed

30 BEE FF+RWT o FF+RWT-+FPT l \ '
== c Y FF+MT o E
T 9 o FF 0
Q" = 1\
) 8 20 % §
Q. 151 = 2 N
2 S 2

10/ 3 .

O 10 : E

5 - A\

O e . 0 . oo 00 . O | 0 o o ‘

Debian ~ Neo4j Wordpress Nodejs Debian Neo4j Wordpress Nodejs

= Chunking speedup approaches deduplication ratio.

= Negligible deduplication ratio reductions (if any).
30

Conclusions

RapidCDC represents a disruptively new approach to improve
CDC chunking speed.

It increases chunking speed by up to 33X without loss of
deduplication ratio.

Its adoption in an existing CDC deduplication system does not
require any major change of its current operation flow.

Its implementation in any existing CDC deduplication systems
requires minimal code changes (100-200 lines of C code in our
prototype)

A prototype implementation is available at
https://qgithub.com/moking/rapidcdc

31

https://github.com/moking/rapidcdc

