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Data is Growing Rapidly
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=  Many of the data needs to be stored for preservation and processing.
= Efficient data storage and management has become a big challenge.



The Opportunity: Data Duplication is Common

= Sources of duplicate data:
— The same files are stored by multiple users into the cloud.
— Continuously updating of files to generate multiple versions.
— Use of checkpointing and repeated data archiving.

= Significant data duplication has been observed for both
backup and primary storage workloads.



When duplication is detected Only one copy is stored:

The Deduplication Technique can Help
(using fingerprinting):
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= Benefits

— Storage space
— 1/O bandwidth
— Network traffic

= An important feature in commercial storage systems.
— NetApp ONTAP system

— Dell-EMC Data Domain system

=  Two critical issues:
— How to deduplicate more data?
— How to deduplicate faster?



Deduplicate at Smaller Chunks ...
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= Two potentially major sources of cost in the deduplication:
— Chunking

— Fingerprinting
= Can chunking be very fast?



Fixed-Size Chunking (FSC)

FSC.: partition files (or data streams) into equal- and fixed-
sized chunks.

— Very fast!

But the deduplication ratio can be significantly compromised.
— The boundary-shift problem.

File A | HOWAREYOU?OK?REALLY?YES?NO
| RYARVARVARVAIVARv A4
FileB | HOWAREYOU?OK?REALLY2YES?NO




Fixed-Size Chunking (FSC)

= FSC: partition files (or data streams) into equal- and fixed-
size chunks.

— Very fast!

= But the deduplication ratio can be significantly compromised
— The boundary-shift problem.

File A | HOWAREYOU?0K?REALLY2YES?NO
XX X XX X X

FileB | HHOWAREYOU?OK?REALLY?YES?NO




Content-Defined Chunking (CDC)

CDC.: determines chunk boundaries according to

contents (a predefined special marker).
— Variable chunk size.
— Addresses boundary-shift problem

File A

File B

Assume the special marker is “?’

HOWAREYOU?OK?REALLY?YES?NO
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The Advantage of CDC
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= Real-world datasets include two-week’s google news, Linux kernels,
and various Docker images.

= CDC'’s deduplication ratio is much higher than FSC.
= However, CDC can be very expensive. 9



CDC can be Too Expensive!

Assume the special marker is “?’

File A | HOWAREYOU?OK?REALLY?ZYES?NO

FileB |HHOWAREYOU?OKZ2REALLY2YES?ZNO

= The marker for identifying chunk boundaries must
— be evenly spaced out with a controllable distance in between.

= Actually the marker is determined by applying a hash
function on a window of bytes.

— E.g., hash(“YOU?”) == pre-defined-value

= The window rolls forward byte-by-byte and the hashlng IS
applied continuously.



CDC Chunking Becomes a Bottleneck

Breakdown of CPU time
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=  Chunking time > 60% of the CPU time.
= |/O bandwidth is not fully utilized.
= The bottleneck shifts from the disk to CPU.
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CDC Chunking Becomes a Bottleneck

Breakdown of CPU time Breakdown of IO time

100

Fingerprinting cm——p ;
" | p€==1/0 Idle
X 60
=
=
Chunking < i
| == 1/O Busy
20 X
0 —
Linux-tar
dr=4.06

=  Chunking time > 60% of the CPU time.
= |/O bandwidth is not fully utilized.
= The bottleneck shifts from the disk to CPU.

12



CDC Chunking Becomes a Bottleneck

Breakdown of CPU time Breakdown of IO time
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=  Chunking time > 60% of the CPU time.
= |/O bandwidth is not fully utilized.
= The bottleneck shifts from the disk to CPU.
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Efforts on Acceleration of CDC Chunking

= Make hashing faster
— Example functions: SimpleByte, gear, and AE

— More likely to generate small chunks
* increasing size of metadata cached in memory for performance

= Use GPU/multi-core to parallelize the chunking process
— Extra hardware cost
— Substantial efforts to deploy
— The speedup is bounded by hardware parallelism.

= Significant software/hardware efforts, but limited
performance return
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We proposed RapidCDC that ...

= s still sequential and doesn’t require additional
cores/threads.

= makes the hashing speed almost irrelevant.
= accelerates the CDC chunking often by 10-30 times.
= has a deduplication ratio the same as regular CDC methods.

= can be adopted in an existing CDC deduplication system by
adding 100~200 LOC in a few functions.
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The Path to the Breakthrough

Unique Chunks
in the Disk



The Path to the Breakthrough
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The Path to the Breakthrough
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The Path to the Breakthrough
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The Path to the Breakthrough
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The Path to the Breakthrough
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The Path to the Breakthrough
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The Path to the Breakthrough
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Duplicate Locality

- Duplicate locality: if two of chunks are duplicates, their next chunks (in their
respective files or data stream) are likely duplicates of each other.

- Duplicate chunks tend to stay together.
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Percentage of chunks (%)

Percentage of chunks (%)

Duplicate Locality

- Duplicate locality: if two of chunks are duplicates, their next chunks (in their
respective files or data stream) are likely duplicates of each other.
- Duplicate chunks tend to stay together.
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RapidCDC: Using Next Chunk in History as a Hint

=  History recording: whenever a chunk is detected, its size is attached to
its previous chunk (fingerprint);

= Hint-assisted chunking: whenever a duplication is detected, use the
history chunk size as a hint for the next chunk boundary.

When FP(B1) == FP(A1):

Offset in file: Py P, P, Ps Py
+SZ= +s3= +s4= I
FileB  1__.._ | B B, B, B, | __ . __l
—
e e em = om— o e —— — — — — — —
Flle A |_ — <FP1 S>> <FP2 S3> <FP3 S4= <FP4 e T
A A, A; Ay

= Regular CDC is used for chunking until a duplicate chunk
(e.g., B4) is found
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More Design Considerations ...

= A chunk may have been followed with chunks of
different sizes
— Maintain a size list

= Validation of Hinted Next Chunk Boundaries

— Four alternative criterions with different efficiency and
confidences
» FF (fast-forwarding only)
» FF+RWT (Rolling window Test)
» FF+MT (Marker Test)
» FF+RWT+FPT (Fingerprint Test)

= Please refer to the paper for detail. 27



Evaluation of RapidCDC

= Prototype: based on a rolling-window-based CDC system.
— Using Rabin/Gear as rolling function for rolling window computation.
— Using SHA1 to calculate fingerprints.

= Three disks with different speed are tested.
— SATA Hard disk: 138 MB/s and 150MB/s for sequential read/write.
— SATA SSD: 520 MB/s and 550MB/s for sequential read/write.

— NVMe SSD: 1.2 GB/s and 2.4G/s for sequential read/write.

28



Synthetic Datasets: Insert/Delete
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= Chunking speedup correlates to the deduplication ratio.
= Deduplication ratio is little affected (except for one very

aggressive validation criterion).
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Real-world Datasets: Chunking Speed
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= Chunking speedup approaches deduplication ratio.

= Negligible deduplication ratio reductions (if any).
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Conclusions

RapidCDC represents a disruptively new approach to improve
CDC chunking speed.

It increases chunking speed by up to 33X without loss of
deduplication ratio.

Its adoption in an existing CDC deduplication system does not
require any major change of its current operation flow.

Its implementation in any existing CDC deduplication systems
requires minimal code changes (100-200 lines of C code in our
prototype)

A prototype implementation is available at
https://qgithub.com/moking/rapidcdc
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