
Wayne State University
Cluster and Internet Computing Laboratory

RapidCDC: Leveraging Duplicate Locality
to Accelerate Chunking in CDC-based Deduplication

Fan Ni*
fan@netapp.com

ATG, NetApp

Song Jiang
song.jiang@uta.edu

UT Arlington

* The work was done when he was a Ph.D. student at UT Arlington

Data is Growing Rapidly

§ Many of the data needs to be stored for preservation and processing.
§ Efficient data storage and management has become a big challenge.

From storagenewsletter.com

2

The Opportunity: Data Duplication is Common

§ Sources of duplicate data:
– The same files are stored by multiple users into the cloud.
– Continuously updating of files to generate multiple versions.
– Use of checkpointing and repeated data archiving.

§ Significant data duplication has been observed for both
backup and primary storage workloads.

3

The Deduplication Technique can Help

Logical Physical

File1
File2

File1

File2
SHA1() = SHA1()

When duplication is detected
(using fingerprinting):

Only one copy is stored:

§ Benefits
– Storage space
– I/O bandwidth
– Network traffic

§ An important feature in commercial storage systems.
– NetApp ONTAP system
– Dell-EMC Data Domain system

§ Two critical issues:
– How to deduplicate more data?
– How to deduplicate faster? 4

Chunking and
fingerprinting

Remove
duplicate chunks

Deduplicate at Smaller Chunks …

… for higher deduplication ratio
§ Two potentially major sources of cost in the deduplication:

– Chunking
– Fingerprinting

§ Can chunking be very fast?
5

Fixed-Size Chunking (FSC)

HOWAREYOU?OK?REALLY?YES?NO File A

HOWAREYOU?OK?REALLY?YES?NO File B

§ FSC: partition files (or data streams) into equal- and fixed-
sized chunks.
– Very fast!

§ But the deduplication ratio can be significantly compromised.
– The boundary-shift problem.

6

Fixed-Size Chunking (FSC)

§ FSC: partition files (or data streams) into equal- and fixed-
size chunks.
– Very fast!

§ But the deduplication ratio can be significantly compromised.
– The boundary-shift problem.

HOWAREYOU?OK?REALLY?YES?NO File A

HOWAREYOU?OK?REALLY?YES?NO File B H

7

Content-Defined Chunking (CDC)

HOWAREYOU?OK?REALLY?YES?NO File A

HOWAREYOU?OK?REALLY?YES?NO File B H

§ CDC: determines chunk boundaries according to
contents (a predefined special marker).
– Variable chunk size.
– Addresses boundary-shift problem

§ Assume the special marker is ‘?’

88

The Advantage of CDC

§ Real-world datasets include two-week’s google news, Linux kernels,
and various Docker images.

§ CDC’s deduplication ratio is much higher than FSC.
§ However, CDC can be very expensive.

Goog
le-n

ew
s

Lin
ux-

tar

Cass
and

ra
Redi

s

Debi
an-

doc
ker

Neo4
j

Word
pre

ss
Node

js
0

4

8

12

16

20

24

28

32

36

40
D

ed
up

lic
at

io
n

ra
ti
o

CDC FSC

9

CDC can be Too Expensive!

HOWAREYOU?OK?REALLY?YES?NO File A

HOWAREYOU?OK?REALLY?YES?NO File B H

Assume the special marker is ‘?’

§ The marker for identifying chunk boundaries must
– be evenly spaced out with a controllable distance in between.

§ Actually the marker is determined by applying a hash
function on a window of bytes.
– E.g., hash(“YOU?”) == pre-defined-value

§ The window rolls forward byte-by-byte and the hashing is
applied continuously. 10

CDC Chunking Becomes a Bottleneck

§ Chunking time > 60% of the CPU time.
§ I/O bandwidth is not fully utilized.
§ The bottleneck shifts from the disk to CPU.

1111

Linux-tar
dr=4.06

Redis
dr=7.17

Neo4j
dr=19.04

0

20

40

60

80

100

T
im

e
(%

)

Fingerprinting

Chunking

Breakdown of CPU time

Linux-tar
dr=4.06

Redis
dr=7.17

Neo4j
dr=19.04

0

20

40

60

80

100

T
im

e
(%

)

CDC Chunking Becomes a Bottleneck

§ Chunking time > 60% of the CPU time.
§ I/O bandwidth is not fully utilized.
§ The bottleneck shifts from the disk to CPU.

1212

Fingerprinting

Chunking

I/O Idle

Breakdown of CPU time Breakdown of IO time

I/O Busy

Linux-tar
dr=4.06

Redis
dr=7.17

Neo4j
dr=19.04

0

20

40

60

80

100

T
im

e
(%

)

CDC Chunking Becomes a Bottleneck

§ Chunking time > 60% of the CPU time.
§ I/O bandwidth is not fully utilized.
§ The bottleneck shifts from the disk to CPU.

1313

I/O Busy

Fingerprinting

Chunking

I/O Idle

Breakdown of CPU time Breakdown of IO time

Efforts on Acceleration of CDC Chunking

§ Make hashing faster
– Example functions: SimpleByte, gear, and AE
– More likely to generate small chunks

• increasing size of metadata cached in memory for performance

§ Use GPU/multi-core to parallelize the chunking process
– Extra hardware cost
– Substantial efforts to deploy
– The speedup is bounded by hardware parallelism.

§ Significant software/hardware efforts, but limited
performance return

1414

We proposed RapidCDC that …

§ is still sequential and doesn’t require additional
cores/threads.

§ makes the hashing speed almost irrelevant.

§ accelerates the CDC chunking often by 10-30 times.

§ has a deduplication ratio the same as regular CDC methods.

§ can be adopted in an existing CDC deduplication system by
adding 100~200 LOC in a few functions.

1515

The Path to the Breakthrough

Unique Chunks
in the Disk

16

The Path to the Breakthrough

Fingerprint

Matched!

17

The Path to the Breakthrough

Fingerprint

Matched !
15KB

15KB

Confirm it !

18

The Path to the Breakthrough

Fingerprint

Matched!
15KB

15KB

10KB

9KB 20KB

12KB

12KB

7KB

19

The Path to the Breakthrough

Fingerprint

Matched !

16KB

20

The Path to the Breakthrough

Fingerprint

Matched !
Fingerprint

Matched !

7KB16KB

P

21

The Path to the Breakthrough

Fingerprint

Matched !
Fingerprint

Matched !

Fingerprint

Matched !

20KB16KB 7KB

P P

22

The Path to the Breakthrough

Fingerprint

Matched !
Fingerprint

Matched !

Fingerprint

Matched !

Fingerprint

Matched !

Fingerprint

Matched !

P
almost always happens !

16KB 7KB 20KB

P P P

23

Duplicate Locality
§ Duplicate locality: if two of chunks are duplicates, their next chunks (in their

respective files or data stream) are likely duplicates of each other.

§ Duplicate chunks tend to stay together.

10 20 40 80 90
of files

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

un
ks

(%
)

All duplicate chunks

Duplicate chunk immediately
following another duplicate chunk

24
(Debian)

Duplicate Locality
§ Duplicate locality: if two of chunks are duplicates, their next chunks (in their

respective files or data stream) are likely duplicates of each other.

§ Duplicate chunks tend to stay together.

10 20 40 80 90
of files

0

20

40

60

80

100

P
er

ce
nt

ag
e

of
ch

un
ks

(%
)

All duplicate chunks

Duplicate chunk immediately
following another duplicate chunk

25

RapidCDC: Using Next Chunk in History as a Hint

+s2=

When FP(B1) == FP(A1):

<FP1, s2> <FP2, s3> <FP3, s4> <FP4, …>

B1 B2 B3…

…File A

File B

P1P0 P2 P3 P4

…

…

+s3=
B4

+s4=

A2A1 A3 A4

Offset in file:

§ History recording: whenever a chunk is detected, its size is attached to
its previous chunk (fingerprint);

§ Hint-assisted chunking: whenever a duplication is detected, use the
history chunk size as a hint for the next chunk boundary.

§ Regular CDC is used for chunking until a duplicate chunk
(e.g., B1) is found

26

More Design Considerations …

27

§ A chunk may have been followed with chunks of
different sizes
– Maintain a size list

§ Validation of Hinted Next Chunk Boundaries
– Four alternative criterions with different efficiency and

confidences
Ø FF (fast-forwarding only)
Ø FF+RWT (Rolling window Test)
Ø FF+MT (Marker Test)
Ø FF+RWT+FPT (Fingerprint Test)

§ Please refer to the paper for detail.

Evaluation of RapidCDC

§ Prototype: based on a rolling-window-based CDC system.
– Using Rabin/Gear as rolling function for rolling window computation.
– Using SHA1 to calculate fingerprints.

§ Three disks with different speed are tested.
– SATA Hard disk: 138 MB/s and 150MB/s for sequential read/write.
– SATA SSD: 520 MB/s and 550MB/s for sequential read/write.
– NVMe SSD: 1.2 GB/s and 2.4G/s for sequential read/write.

28

§ Chunking speedup correlates to the deduplication ratio.
§ Deduplication ratio is little affected (except for one very

aggressive validation criterion).

Synthetic Datasets: Insert/Delete

29

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5

6

7

De
du

pl
ica

tio
n

ra
tio

Regular

FF+RWT+FPT

FF+RWT

FF+MT

FF

1000 2000 5000 10000 20000
of modifications

0

1

2

3

4

5

6

Sp
ee

du
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

Sp
ee

du
p

D
ed

up
lic

at
io

n
ra

tio
of modifications # of modifications

Debian Neo4j Wordpress Nodejs
0

5

10

15

20

25

30

Sp
ee

du
p

FF+RWT+FPT

FF+RWT

FF+MT

FF

Real-world Datasets: Chunking Speed

§ Chunking speedup approaches deduplication ratio.
§ Negligible deduplication ratio reductions (if any).

33X
Faster!

Debian Neo4j Wordpress Nodejs
0

10

20

30

40

D
ed

up
lic

at
io

n
ra

ti
o

Regular

FF+RWT+FPT

FF+RWT

FF+MT

FF

30

Sp
ee

du
p

D
ed

up
lic

at
io

n
ra

tio

Conclusions

§ RapidCDC represents a disruptively new approach to improve
CDC chunking speed.

§ It increases chunking speed by up to 33X without loss of
deduplication ratio.

§ Its adoption in an existing CDC deduplication system does not
require any major change of its current operation flow.

§ Its implementation in any existing CDC deduplication systems
requires minimal code changes (100-200 lines of C code in our
prototype)

§ A prototype implementation is available at
https://github.com/moking/rapidcdc

31

https://github.com/moking/rapidcdc

