Perceptual Compression for Video Storage and Processing Systems

Amrita Mazumdar, Brandon Haynes, Magda Balazinska, Luis Ceze, Alvin Cheung*, Mark Oskin

University of Washington
*University of California, Berkeley

Video data is a fast-growing form of digital content

Hours of Video Uploaded Per Minute to YouTube

Video data is a fast-growing form of digital content

Hours of Video Uploaded Per Minute to YouTube

Exabytes (EB) uploaded per month

Video applications use compression to trade visual redundancy for file size

Baseline codec (HEVC) @ 20 Mbps 4 hours video playback

Video applications use compression to trade visual redundancy for file size

Baseline codec (HEVC) @ 20 Mbps 4 hours video playback

This work: Integrating new perceptual cues with video distribution systems for reduced video sizes

Baseline HEVC @ 20 Mbps 4 hours video playback This work: 1 Mbps 6.5 hours video playback

Saliency is a powerful perceptual cue for reducing video size

4K 360° video 300 MB

Al-generated saliency map only 15% of pixels are important

Saliency is a powerful perceptual cue for reducing video size

Saliency is one of many new perceptual metrics

How can video services take advantage of them?

Can we leverage perception in cloud-scale video services for better storage and performance?

Al-generated saliency map only 15% of pixels are important

Requires custom, outdated codecs

Recent work:

- outdated codec
- 1,500 lines of code
- already worse by newer codecs w/o saliency compression

Requires custom, outdated codecs

No integration with storage manager

Video storage manager concerns:

- How big is a file?
- How can I compress it?
- How do I control quality?

Requires custom, outdated codecs

No integration with storage manager

No interface for applications

Video app concerns:

- Can I process this like any other video?
- Do I have to re-package this video for standard players?

Requires custom, outdated codecs

No integration with storage manager

No interface for applications

Goals

Vignette: a system for perceptual compression and storage

Vignette Compression

codec-free perceptual video compression framework

Vignette Storage

storage manager for perceptually-compressed videos

Reduces storage by up to 75-95% with little quality loss

Resulting videos use 50% less power on mobile phones

ingest video

generate perceptual map for the video

generate perceptual map for the video

- high-accuracy, computeintensive neural network
- designed to easily switch to new models or perceptual metrics

segenerate perceptual map for the video ingest video generate tiling

configuration

ingest video

Tiles:

- -codec-standard feature
- -divide video into smaller regions (some overhead)
- drive quality per-tile

generate tiling configuration

generate perceptual map for the video

ingest video

pick best quality, lowest overhead

generate tiling configuration

segenerate perceptual map for the video ingest video generate tiling

configuration

Vignette Storage uses compressed metadata to communicate tile configurations

up to 1.75x compressed video size

Vignette Storage uses compressed metadata to communicate tile configurations

this work: video + lowoverhead metadata

metadata: tile config & qualities (8-100 B)

up to 1.75x compressed video size

Vignette Storage provides a faster heuristic search to find tile configurations

Vignette Storage provides a faster heuristic search to find tile configurations

motion vectors in video

New algorithm using motion vectors to guide tile size

Key Insight: splitting motion vectors across tiles results in larger videos

Vignette Storage provides a faster heuristic search to find tile configurations

motion vectors in video

Evaluation & Results

Baseline HEVC @ 20 Mbps 4 hours video playback

Vignette @ 1 Mbps 6.5 hours video playback

Evaluation & Results

Compression Performance and Quality

How small are Vignette videos?

How much quality loss is there?

Cloud Performance

Is Vignette practical to use in the cloud?

How does Vignette affect TCO?

Evaluation & Results

Compression Performance and Quality

How small are Vignette videos?

How much quality loss is there?

Cloud Performance

Is Vignette practical to use in the cloud?

How does Vignette affect TCO?

Vignette Storage Savings

Vignette Quality

Vignette Perceptual Quality User Study

Vignette Perceptual Quality User Study

Vignette Perceptual Quality User Study

Evaluation & Results

Compression Performance and Quality

Vignette videos are 85% smaller while maintaining quality. For 75% smaller videos, users did not notice quality impact.

Cloud Performance

Is Vignette practical to use in the cloud? How does Vignette affect TCO?

Evaluation & Results

Compression Performance and Quality

Vignette videos are 85% smaller while maintaining quality. For 75% smaller videos, users did not notice quality impact.

Cloud Performance

Is Vignette practical to use in the cloud? How does Vignette affect TCO?

TCO analysis on AWS datacenter

storing and streaming a 1-million video library

TCO analysis on AWS datacenter

storing and streaming a 1-million video library

TCO analysis on AWS datacenter

storing and streaming a 1-million video library

Results: Mobile Power Analysis

Results: Mobile Power Analysis

Evaluation & Results

Compression Performance and Quality

Vignette videos are 85% smaller while maintaining quality. For 75% smaller videos, users did not notice quality impact.

Cloud Performance

Vignette amortizes large transcode costs in ~2000 streams / video. Vignette videos also reduce power during mobile playback.

Vignette: a system for perceptual compression and storage

Vignette Compression

codec-free perceptual video compression

Vignette Storage

storage manager for perceptually-compressed videos

Reduces storage by up to 75-95% with little quality loss

Resulting videos use 50% less power on mobile phones

Thank you!

https://
homes.cs.washington.edu/
~amrita/vignette_socc19.html

