
Centralized Core-granular 
Scheduling for Serverless Functions

Kostis Kaffes, Neeraja J. Yadwadkar, Christos Kozyrakis



Serverless Computing is Convenient for Users

Users:
• Define a function
• Specify events as execution triggers
• Pay only for the actual runtime of the function activation

2



Ease-of-use has made Serverless Prevalent

3

Compilation
gg (ATC ’19)

PyWren
(SoCC ‘17)

ExCamera
(NSDI ‘17)

User-facing apps Data Analytics Exotic Workloads

NFV
(HotNets ’18)Sprocket

(SoCC ‘18)



Serverless Functions’ Characteristics

• Burstiness
à Degree of parallelism can fluctuate wildly

• Short but highly-variable execution times
à Execution times vary from ms to minutes

• Low or no intra-function parallelism
à Each function runs on at most a couple of CPUs

4



Serverless Systems’ Performance Metrics

5

• Elasticity
à Spawn a large number of functions in a short period of time

• Average and Tail Latency
à User-facing workloads
à High fan-out workloads

• Cost Efficiency



Serverless Computing is Challenging for Providers

6

Providers need to manage:
• Function placement
• Scaling
• Runtime Environment



Serverless Function Lifecycle

7

GATEWAY

Container

ServersRegistry

Image

Container

1

2

3

4

5

warm 
start

cold
start



Different Approaches on Serverless Scheduling

8

• Task scheduling frameworks (Sparrow, Canary)

• Open-source serverless platforms (OpenFaas, Kubeless)

• Commercial serverless platforms (AWS Lambda, Azure 
Functions, Google Cloud Functions)



Option 1: Task Scheduling Frameworks

Two-level Scheduling:
• Simple load-balancer assigns tasks to servers
• Per-machine agent detects imbalances and migrates tasks 

away from busy servers

9

TT

TLBT



Task Scheduling Frameworks’ Problems

Such a design is unsuitable for serverless functions
• High variability à Queue imbalances à Frequent migrations
• High cold-start cost à Increased latency

10

TT

TLB

T



Option 2: Open-source Serverless Schedulers

• Gateway receives functions invocations
• All container management is done by Kubernetes
• No migrations

11

à Gateway Parameters
-- Scaling policy
-- Max/min # instances
-- Timeouts
à Kubernetes parameters
-- Container placement
-- …

Scheduling split across 
multiple points

Hard to configure

Reduced elasticity and 
efficiency



Option 3: Commercial Serverless Schedulers

• Gateway packs containers running function invocations in VMs 
to improve utilization

• Once VM utilization exceeds some threshold, it spins up more 
VMs in different servers

12

Opaque policies and decisions

+
Function packing

=
Unpredictable performance



How can we avoid existing schedulers’ problems?

13

Problem: High variability leading to imbalances and queueing
Solution: Centralized Scheduling and Queueing

Problem: Hard or impossible to configure
Problem: Coarse-scale scheduling can cause interference
Solution: Core-Granular Scheduling



Centralized and Core-granular Scheduling

Visibility of all available cores:
• Less queueing
• Lower latency
• Higher elasticity

Fine-grain interference/utilization control:
• Pack many function instances together to maximize 

efficiency
• Reduce interference by placing one function per core

14



Opportunity 1: Inter-function Communication

15

Serverless workloads create data that need to be transferred 
between function instances

Now: Data shared through a common data store

Ideal: Direct function-to-function communication
àNaming, addressing, and discovery through the centralized 

scheduler
àAvoids an unnecessary data transfer and reduces cost



Opportunity 2: Core Specialization

16

Centralized scheduler can keep a list of “warm” cores for:

• Specific functions
• Different language runtimes (Python, Javascript, etc.)
• Different libraries and frameworks (numpy, scikit-learn)

and reduce cold start time



Opportunity 3: “Smarter” Policies

17

The scheduler has full visibility on the cluster state

It can use or learn better policies regarding:
• Container re-use
• Scaling
• Function packing
• …



Conclusion

18

Centralized and core-granular scheduling can enable:
àBetter elasticity
àLower latency
àHigher efficiency

It also provides exciting opportunities for future research:
à Inter-function communication
àCore Specialization
à”Smarter” Policies



Backup

19



Detailed Implementation

i. Request arrives to a scheduler 
core

ii. Dequeue worker core
iii. Schedule request to worker core
iv. Enqueue worker core
v. Request arrives to scheduler 

core with empty worker core list
vi. Steal worker core from different 

queue
vii.Schedule request to worker core

20


