Centralized Core-granular
Scheduling for Serverless Functions

Kostis Kaffes, Neeraja J. Yadwadkar, Christos Kozyrakis

Stanford MAST

Serverless Computing is Convenient for Users

Users:

* Define a function

* Specify events as execution triggers

* Pay only for the actual runtime of the function activation

Ease-of-use has made Serverless Prevalent

User-facing apps

Data Analytics

Exotic Workloads

T
Rt
[

W, e

_ @)/

PyWren
(SoCC “17)
ExCamera
(NSDI “17)
Sprocket

\(socc ‘18)

/

Compilation
gg (ATC '19)

NFV

(HotNets "1 8)

_

/

3

Serverless Functions’ Characteristics

Serverless Systems’ Performance Metrics

Serverless Computing is Challenging for Providers

Providers need to manage:
* Function placement

* Scaling

* Runtime Environment

Serverless Function Lifecycle

B

GATEWAY

o] |y
start
S3

82 kafka — 5 m cold
»—_tmese H—™ start

f
Regishﬂy Servers

Different Approaches on Serverless Scheduling

Option 1: Task Scheduling Frameworks

Two-level Scheduling:

* Simple load-balancer assigns tasks to servers

* Per-machine agent detects imbalances and migrates tasks
away from busy servers

4)

LB

Task Scheduling Frameworks’ Problems

Such a design is unsuitable for serverless functions
* High variability = Queue imbalances =2 Frequent migrations
* High cold-start cost = Increased latency

LB

10

Option 2: Open-source Serverless Schedulers

* Gateway receives functions invocations
* All container management is done by Kubernetes

* No migrations Scheduling split across
equests multiple points

- Gateway Parameters request M P ‘p

-- Scaling policy SRty Hard to configure

-- Max/min # instances —t Y 2

—- Timeouts Kubernetes Reduced elasticity and

- Kubernetes parameters efficiency
o Container Container
-- Container placement - oo

11

Option 3: Commercial Serverless Schedulers

* Gateway packs containers running function invocations in VMs

to improve utilization
* Once VM ttilization exceeds some threshold, it spins up more
VMs in different servers

Requests M Opaque policies and decisions
+

[Gateway J Function packing

N =

{ [} Unpredictable performance
VM VM (X X

How can we avoid existing schedulers’ problems?

Problem: High variability leading to imbalances and queueing
Solution: Centralized Scheduling and Queueing

Problem: Hard or impossible to configure

Problem: Coarse-scale scheduling can cause interference
Solution: Core-Granular Scheduling

13

Centralized and Core-granular Scheduling

Visibility of all available cores: Requestsv

* Less queueing [Scheduler}
* Lower latency

* Higher elasticity [888} [8\8] coe

. o o oo . Work Work
Fine-grain interference /utilization control: "' e

* Pack many function instances together to maximize
efficiency
* Reduce interference by placing one function per core

Opportunity 1: Inter-function Communication

Serverless workloads create data that need to be transferred
between function instances

Now: Data shared through a common data store

Ideal: Direct function-to-function communication

- Naming, addressing, and discovery through the centralized
scheduler

—> Avoids an unnecessary data transfer and reduces cost

Opportunity 2: Core Specialization

Centralized scheduler can keep a list of “warm” cores for:
* Specific functions
* Different language runtimes (Python, Javascript, etc.)

* Different libraries and frameworks (numpy, scikit-learn)

and reduce cold start time

Opportunity 3: “Smarter” Policies

The scheduler has full visibility on the cluster state

It can use or learn better policies regarding:
* Container re-use

* Scaling
* Function packing

Conclusion

Centralized and core-granular scheduling can enable:
- Better elasticity

- Lower latency

- Higher efficiency

It also provides exciting opportunities for future research:
-2 Inter-function communication

—> Core Specialization

-2 "Smarter” Policies

Backup

Detailed Implementation

i. Request arrives to a scheduler
core

ii. Dequeue worker core
iii. Schedule request to worker core
iv. Enqueue worker core

v. Request arrives to scheduler
core with empty worker core list

vi. Steal worker core from different
queue

vii.Schedule request to worker core

LN

Scheduler

J

O Scheduler Core

