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Debugging Distributed Systems

Challenging: Where is the problem?

It could be in:

● One of many components

● One of several stack levels
● VM vs. hypervisor

● Application vs. kernel

● Inter-component interactions
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Today’s Debugging Methods

Different problems benefit from different instrumentation points.

= instrumentation point

You can’t instrument everything: too much overhead, too much data.

Instrumentation data
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Gather

data from current 

instrumentation
Use data to 

guess where to 

add 

instrumentation

Able to idenfity problem 

source? Usually no…

Today’s Debugging Cycle
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Gather

data from current 
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Use data to 
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Able to idenfity problem 

source?

Our Research Question
Sometimes yes!!

Can we create a continuously-running

instrumentation framework for production 

distributed systems that will 

automatically explore instrumentation 

choices across stack-layers for a newly-

observed performance problem?

Report to 

developers



6

 If requests that are expected to perform similarly do not: 

 There is something unknown about their workflows, which could represent performance problems

 Localizing source of variation gives insight into where instrumentation is needed.
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Key Enabler: Workflow-centric Tracing

 Used to get workflows from running systems

 Works by propagating common context with requests (e.g., request ID)

 Trace points record important events with context

 Granularity is determined by instrumentation in the system
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Vision of Pythia
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Challenge 1: Grouping
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Which Requests are Expected to Perform Similarly

 Depends on the distributed application begin debugged

 Generally applicable: Requests of the same type that access the same services

 Additional app-specific details could be incorporated
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Challenge 2: Localization
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Localizing Performance Variations

 Order groups and edges within groups.

 How to quantify performance variation?

 Multiple metrics to measure variation

 Variance/standard deviation

 Coefficient of variance (std. / mean)

 Intuitive

 Very small mean -> very high CoV

 Multimodality

 Multiple modes of operation
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Challenge 3: What to enable

22
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Search Space

 How to represent all of the 

instrumentation that Pythia can 

control?

 How to find relevant next-trace-

points after problem is narrowed 

down? 

 Trade-offs:

 Quick to access

 Compact

 Limit spurious instrumentation choices

Search Strategies

 How to explore the search space?

 Quickly converge on problems

 Keep instrumentation overhead low

 Reduce time-to-solution

 Many possible options

 Pluggable design
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Search Space:

Calling Context Trees

 One node for each calling 
context i.e., stack trace

 Leverages the hierarchy of 
distributed system architecture

 Construction: offline profiling

 Trade-offs

 Quick to access

 Compact

 Limit spurious instrumentation 
choices
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Search Strategy:

Hierarchical Search

 One of many choices

 Search trace point choices 

top-down

 Very compatible with 

Calling Context Trees
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Explaining Variation Using Key-Value Pairs in Trace Points

 Canonical Correlation Analysis (CCA)

 Used to find important key-value pairs in the traces

𝑎′ = max
𝑎

𝑐𝑜𝑟𝑟(𝑎𝑇𝑋, 𝑌)

𝑌 = (𝑡1, 𝑡2, … , 𝑡𝑛) the request durations

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑚) the collected variables

𝑎′ ∈ ℝ𝑚 the coefficients indicating most 

correlated variables
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Vision of Pythia – Completing the Cycle

31



32

Validating Pythia’s Approach

 Can performance variation guide instrumentation choices?

 Run exploratory analysis for OpenStack

 Start with default instrumentation

 Localize performance variation

 Find next instrumentation to enable

 Use CCA for finding important key-value pairs
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Validating Pythia’s Approach - Setup

 OpenStack: an open source cloud platform, written in Python

 OSProfiler: OpenStack’s tracing framework 

 We implemented controllable trace points

 Store more variables such as queue lengths

 Running on MOC

 8 vCPUs, 32 GB memory

 Workload

 9 request types, VM/floating IP/volume create/list/delete

 Simultaneously execute 20 workloads
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Step 1: Grouping & Localization

 Collect latency values for 

each request

 Grouping: Same request 

type with same trace points

 Server create requests have 

unusually high variance and 

latency

 Pythia would focus on this 

group
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Step 2: Enable additional instrumentation

 Pythia localizes variation into a semaphore in server create

 After adding queue length variable into traces, we see 3 distinct latency groups

 CCA also finds this variable important

Groups with different queue lengths

TAKEAWAY: Pythia’s approach identifies the 

instrumentation needed to debug this problem
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Open Questions

 What is the ideal structure of the search space? What are possible search 

strategies? What are the trade-offs?

 How can we formulate and choose an “instrumentation budget”?

 How granular should the performance expectations be?

 How can we integrate multiple stack layers into Pythia?
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More in the paper

 Pythia architecture

 Problem scenarios

 Instrumentation plane requirements

 Cross-layer instrumentation
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Concluding Remarks

 It is very difficult to debug distributed systems

 Automating instrumentation choice is a 

promising solution to overcome this difficulty

More info in our paper  (bu.edu/peaclab/publications)

Please send feedback to ates@bu.edu

or join us at the poster sesion


