
1

An Automated, Cross-Layer

Instrumentation Framework

for Diagnosing Performance Problems

in Distributed Applications

1Boston University; 2RedHat, Inc.; 3Tufts University

ACM Symposium on Cloud Computing

November 21, 2019, Santa Cruz, CA

By Emre Ates1, Lily Sturmann2, Mert Toslali1,

Orran Krieger1, Richard Megginson2,

Ayse K. Coskun1, and Raja Sambasivan3

2

Debugging Distributed Systems

Challenging: Where is the problem?

It could be in:

● One of many components

● One of several stack levels
● VM vs. hypervisor

● Application vs. kernel

● Inter-component interactions

3

Today’s Debugging Methods

Different problems benefit from different instrumentation points.

= instrumentation point

You can’t instrument everything: too much overhead, too much data.

Instrumentation data

4

Gather

data from current

instrumentation
Use data to

guess where to

add

instrumentation

Able to idenfity problem

source? Usually no…

Today’s Debugging Cycle

5

Gather

data from current

instrumentation
Use data to

guess where to

add

instrumentation

Able to idenfity problem

source?

Our Research Question
Sometimes yes!!

Can we create a continuously-running

instrumentation framework for production

distributed systems that will

automatically explore instrumentation

choices across stack-layers for a newly-

observed performance problem?

Report to

developers

6

 If requests that are expected to perform similarly do not:

 There is something unknown about their workflows, which could represent performance problems

 Localizing source of variation gives insight into where instrumentation is needed.

time

clientstart

LBstart

metadata read

LBend

clientend

clientstart

LBstart

metadata read

LBend

clientend

clientstart

LBstart

metadata read

LBend

clientend

A READ request from storage

Request #2

Request #3

Key insight: Performance variation indicates where to instrument
h
ie
ra
rc
h
y

7

Key Enabler: Workflow-centric Tracing

 Used to get workflows from running systems

 Works by propagating common context with requests (e.g., request ID)

 Trace points record important events with context

 Granularity is determined by instrumentation in the system

time

clientstart

LBstart

metadata read

LBend

clientend

clientstart

LBstart

metadata read

LBend

clientend

h
ie
ra
rc
h
y

8

Vision of Pythia

9

Vision of Pythia

10

Vision of Pythia

11

Vision of Pythia

12

Vision of Pythia

13

Vision of Pythia

14

Vision of Pythia

15

Vision of Pythia

16

Vision of Pythia

17

Vision of Pythia

17

18

Challenge 1: Grouping

19

Which Requests are Expected to Perform Similarly

 Depends on the distributed application begin debugged

 Generally applicable: Requests of the same type that access the same services

 Additional app-specific details could be incorporated

clientstart

LBstart

metadata read

LBend

clientend
clientstart

LBstart

metadata read

LBend

clientend
clientstart

LBstart

metadata read

LBend

clientendclientstart

LBstart

metadata read

LBend

clientend

clientstart

authstart authend

clientendclientstart

authstart authend

clientendclientstart

authstart authend

clientend

Expectation 1:

Read requests

Expectation 2:

Auth requests

20

Challenge 2: Localization

21

Localizing Performance Variations

 Order groups and edges within groups.

 How to quantify performance variation?

 Multiple metrics to measure variation

 Variance/standard deviation

 Coefficient of variance (std. / mean)

 Intuitive

 Very small mean -> very high CoV

 Multimodality

 Multiple modes of operation

time

#
 r

e
q

s

c
o

m
p

le
te

d
#

 r
e

q
s

c
o

m
p

le
te

d

time

= acceptable std

dev threshold

22

Challenge 3: What to enable

22

23

Search Space

 How to represent all of the

instrumentation that Pythia can

control?

 How to find relevant next-trace-

points after problem is narrowed

down?

 Trade-offs:

 Quick to access

 Compact

 Limit spurious instrumentation choices

Search Strategies

 How to explore the search space?

 Quickly converge on problems

 Keep instrumentation overhead low

 Reduce time-to-solution

 Many possible options

 Pluggable design

24

Search Space:

Calling Context Trees

 One node for each calling
context i.e., stack trace

 Leverages the hierarchy of
distributed system architecture

 Construction: offline profiling

 Trade-offs

 Quick to access

 Compact

 Limit spurious instrumentation
choices

nova start

nova end

neutron end glance start

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

25

Search Strategy:

Hierarchical Search

 One of many choices

 Search trace point choices

top-down

 Very compatible with

Calling Context Trees

nova start

nova end

neutron end glance end

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

26

Search Strategy:

Hierarchical Search

 One of many choices

 Search trace point choices

top-down

 Very compatible with

Calling Context Trees

nova start

nova end

neutron end glance start

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

27

Search Strategy:

Hierarchical Search

 One of many choices

 Search trace point choices

top-down

 Very compatible with

Calling Context Trees

nova start

nova end

neutron end glance start

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

28

Search Strategy:

Hierarchical Search

 One of many choices

 Search trace point choices

top-down

 Very compatible with

Calling Context Trees

nova start

nova end

neutron end glance start

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

29

Search Strategy:

Hierarchical Search

 One of many choices

 Search trace point choices

top-down

 Very compatible with

Calling Context Trees

nova start

nova end

neutron end glance start

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

30

Explaining Variation Using Key-Value Pairs in Trace Points

 Canonical Correlation Analysis (CCA)

 Used to find important key-value pairs in the traces

𝑎′ = max
𝑎

𝑐𝑜𝑟𝑟(𝑎𝑇𝑋, 𝑌)

𝑌 = (𝑡1, 𝑡2, … , 𝑡𝑛) the request durations

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑚) the collected variables

𝑎′ ∈ ℝ𝑚 the coefficients indicating most

correlated variables

31

Vision of Pythia – Completing the Cycle

31

32

Validating Pythia’s Approach

 Can performance variation guide instrumentation choices?

 Run exploratory analysis for OpenStack

 Start with default instrumentation

 Localize performance variation

 Find next instrumentation to enable

 Use CCA for finding important key-value pairs

33

Validating Pythia’s Approach - Setup

 OpenStack: an open source cloud platform, written in Python

 OSProfiler: OpenStack’s tracing framework

 We implemented controllable trace points

 Store more variables such as queue lengths

 Running on MOC

 8 vCPUs, 32 GB memory

 Workload

 9 request types, VM/floating IP/volume create/list/delete

 Simultaneously execute 20 workloads

34

Step 1: Grouping & Localization

 Collect latency values for

each request

 Grouping: Same request

type with same trace points

 Server create requests have

unusually high variance and

latency

 Pythia would focus on this

group

35

Step 2: Enable additional instrumentation

 Pythia localizes variation into a semaphore in server create

 After adding queue length variable into traces, we see 3 distinct latency groups

 CCA also finds this variable important

Groups with different queue lengths

TAKEAWAY: Pythia’s approach identifies the

instrumentation needed to debug this problem

36

Open Questions

 What is the ideal structure of the search space? What are possible search

strategies? What are the trade-offs?

 How can we formulate and choose an “instrumentation budget”?

 How granular should the performance expectations be?

 How can we integrate multiple stack layers into Pythia?

37

More in the paper

 Pythia architecture

 Problem scenarios

 Instrumentation plane requirements

 Cross-layer instrumentation

38
11/21/2019An automated, cross-layer instrumentation framework for diagnosing performance problems in distributed applications 38

Concluding Remarks

 It is very difficult to debug distributed systems

 Automating instrumentation choice is a

promising solution to overcome this difficulty

More info in our paper (bu.edu/peaclab/publications)

Please send feedback to ates@bu.edu

or join us at the poster sesion

