
1

An Automated, Cross-Layer

Instrumentation Framework

for Diagnosing Performance Problems

in Distributed Applications

1Boston University; 2RedHat, Inc.; 3Tufts University

ACM Symposium on Cloud Computing

November 21, 2019, Santa Cruz, CA

By Emre Ates1, Lily Sturmann2, Mert Toslali1,

Orran Krieger1, Richard Megginson2,

Ayse K. Coskun1, and Raja Sambasivan3

2

Debugging Distributed Systems

Challenging: Where is the problem?

It could be in:

● One of many components

● One of several stack levels
● VM vs. hypervisor

● Application vs. kernel

● Inter-component interactions

3

Today’s Debugging Methods

Different problems benefit from different instrumentation points.

= instrumentation point

You can’t instrument everything: too much overhead, too much data.

Instrumentation data

4

Gather

data from current

instrumentation
Use data to

guess where to

add

instrumentation

Able to idenfity problem

source? Usually no…

Today’s Debugging Cycle

5

Gather

data from current

instrumentation
Use data to

guess where to

add

instrumentation

Able to idenfity problem

source?

Our Research Question
Sometimes yes!!

Can we create a continuously-running

instrumentation framework for production

distributed systems that will

automatically explore instrumentation

choices across stack-layers for a newly-

observed performance problem?

Report to

developers

6

 If requests that are expected to perform similarly do not:

 There is something unknown about their workflows, which could represent performance problems

 Localizing source of variation gives insight into where instrumentation is needed.

time

clientstart

LBstart

metadata read

LBend

clientend

clientstart

LBstart

metadata read

LBend

clientend

clientstart

LBstart

metadata read

LBend

clientend

A READ request from storage

Request #2

Request #3

Key insight: Performance variation indicates where to instrument
h
ie
ra
rc
h
y

7

Key Enabler: Workflow-centric Tracing

 Used to get workflows from running systems

 Works by propagating common context with requests (e.g., request ID)

 Trace points record important events with context

 Granularity is determined by instrumentation in the system

time

clientstart

LBstart

metadata read

LBend

clientend

clientstart

LBstart

metadata read

LBend

clientend

h
ie
ra
rc
h
y

8

Vision of Pythia

9

Vision of Pythia

10

Vision of Pythia

11

Vision of Pythia

12

Vision of Pythia

13

Vision of Pythia

14

Vision of Pythia

15

Vision of Pythia

16

Vision of Pythia

17

Vision of Pythia

17

18

Challenge 1: Grouping

19

Which Requests are Expected to Perform Similarly

 Depends on the distributed application begin debugged

 Generally applicable: Requests of the same type that access the same services

 Additional app-specific details could be incorporated

clientstart

LBstart

metadata read

LBend

clientend
clientstart

LBstart

metadata read

LBend

clientend
clientstart

LBstart

metadata read

LBend

clientendclientstart

LBstart

metadata read

LBend

clientend

clientstart

authstart authend

clientendclientstart

authstart authend

clientendclientstart

authstart authend

clientend

Expectation 1:

Read requests

Expectation 2:

Auth requests

20

Challenge 2: Localization

21

Localizing Performance Variations

 Order groups and edges within groups.

 How to quantify performance variation?

 Multiple metrics to measure variation

 Variance/standard deviation

 Coefficient of variance (std. / mean)

 Intuitive

 Very small mean -> very high CoV

 Multimodality

 Multiple modes of operation

time

#
 r

e
q

s

c
o

m
p

le
te

d
#

 r
e

q
s

c
o

m
p

le
te

d

time

= acceptable std

dev threshold

22

Challenge 3: What to enable

22

23

Search Space

 How to represent all of the

instrumentation that Pythia can

control?

 How to find relevant next-trace-

points after problem is narrowed

down?

 Trade-offs:

 Quick to access

 Compact

 Limit spurious instrumentation choices

Search Strategies

 How to explore the search space?

 Quickly converge on problems

 Keep instrumentation overhead low

 Reduce time-to-solution

 Many possible options

 Pluggable design

24

Search Space:

Calling Context Trees

 One node for each calling
context i.e., stack trace

 Leverages the hierarchy of
distributed system architecture

 Construction: offline profiling

 Trade-offs

 Quick to access

 Compact

 Limit spurious instrumentation
choices

nova start

nova end

neutron end glance start

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

25

Search Strategy:

Hierarchical Search

 One of many choices

 Search trace point choices

top-down

 Very compatible with

Calling Context Trees

nova start

nova end

neutron end glance end

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

26

Search Strategy:

Hierarchical Search

 One of many choices

 Search trace point choices

top-down

 Very compatible with

Calling Context Trees

nova start

nova end

neutron end glance start

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

27

Search Strategy:

Hierarchical Search

 One of many choices

 Search trace point choices

top-down

 Very compatible with

Calling Context Trees

nova start

nova end

neutron end glance start

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

28

Search Strategy:

Hierarchical Search

 One of many choices

 Search trace point choices

top-down

 Very compatible with

Calling Context Trees

nova start

nova end

neutron end glance start

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

29

Search Strategy:

Hierarchical Search

 One of many choices

 Search trace point choices

top-down

 Very compatible with

Calling Context Trees

nova start

nova end

neutron end glance start

keystone start

keystone end

neutron start

glance start

keystone

keystoneneutron

keystone

glance

nova

Offline-collected trace

Search space

30

Explaining Variation Using Key-Value Pairs in Trace Points

 Canonical Correlation Analysis (CCA)

 Used to find important key-value pairs in the traces

𝑎′ = max
𝑎

𝑐𝑜𝑟𝑟(𝑎𝑇𝑋, 𝑌)

𝑌 = (𝑡1, 𝑡2, … , 𝑡𝑛) the request durations

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑚) the collected variables

𝑎′ ∈ ℝ𝑚 the coefficients indicating most

correlated variables

31

Vision of Pythia – Completing the Cycle

31

32

Validating Pythia’s Approach

 Can performance variation guide instrumentation choices?

 Run exploratory analysis for OpenStack

 Start with default instrumentation

 Localize performance variation

 Find next instrumentation to enable

 Use CCA for finding important key-value pairs

33

Validating Pythia’s Approach - Setup

 OpenStack: an open source cloud platform, written in Python

 OSProfiler: OpenStack’s tracing framework

 We implemented controllable trace points

 Store more variables such as queue lengths

 Running on MOC

 8 vCPUs, 32 GB memory

 Workload

 9 request types, VM/floating IP/volume create/list/delete

 Simultaneously execute 20 workloads

34

Step 1: Grouping & Localization

 Collect latency values for

each request

 Grouping: Same request

type with same trace points

 Server create requests have

unusually high variance and

latency

 Pythia would focus on this

group

35

Step 2: Enable additional instrumentation

 Pythia localizes variation into a semaphore in server create

 After adding queue length variable into traces, we see 3 distinct latency groups

 CCA also finds this variable important

Groups with different queue lengths

TAKEAWAY: Pythia’s approach identifies the

instrumentation needed to debug this problem

36

Open Questions

 What is the ideal structure of the search space? What are possible search

strategies? What are the trade-offs?

 How can we formulate and choose an “instrumentation budget”?

 How granular should the performance expectations be?

 How can we integrate multiple stack layers into Pythia?

37

More in the paper

 Pythia architecture

 Problem scenarios

 Instrumentation plane requirements

 Cross-layer instrumentation

38
11/21/2019An automated, cross-layer instrumentation framework for diagnosing performance problems in distributed applications 38

Concluding Remarks

 It is very difficult to debug distributed systems

 Automating instrumentation choice is a

promising solution to overcome this difficulty

More info in our paper (bu.edu/peaclab/publications)

Please send feedback to ates@bu.edu

or join us at the poster sesion

