DCUDA: Dynamic GPU Scheduling with
Live Migration Support

Fan Guo!, Yongkun Li!, John C.S. Lui?, Yinlong Xu'!

I'University of Science and Technology of China

’The Chinese University of Hong Kong

Background & Problems

DCUDA Design

Evaluation

Conclusion

NI NI N N

(=) GPU Sharing and Scheduling

m GPUs are underloaded without sharing

v A server may contain multiple GPUs
v Each GPU contains thousands of cores

B GPU sharing allows multiple apps to run

concurrent

App.

AP|

Frontend |

AP]

y on one GPU

App.

Frontend

-

Backend

T

|

N T~

GPU scheduling
IS necessary

(o)) (] (20

Load balance
GPU utilization

(PR3

(-))) Current Scheduling Schemes

‘a,p &7,
C, e
“ence gpa ve

B Current schemes are “static”

v Round-robin, prediction-based, least-loaded

v They only make the assignment of applications
before running them

m State-of-the-art: Least-loaded scheduling
v Assign new app to the GPU with the least load

New App.

i A

—

(o) {e) (o) (o
B

%’3-&#

(-))) Limitations of Static Scheduling

o,

\Sz

5. S
Yence gug veS

m | oad imbalance (least-loaded scheduling)

- = B

Fraction of execution time
8 8
R R

()
o
R

o
R

GPUO GPU1 GPU2 GPU3
0%-50% 50%-100% M Overloaded

The fraction of time in which at least one GPU is
overloaded and some other GPU is underloaded accounts
for up to 41.7% (overloaded: demand > GPU cores)

5

(=) Limitations of Static Scheduling

®m \Why does static scheduling result in load
imbalance?

B Assign before running

New App.

v Hard to get exact
] resource demand
e v The assignment is not
GPU1] [GPU2][GPUN-1] [GPUN] optimal

[1]

B No migration support
v No way to adjust online

Limitations of Static Scheduling

B Fairness issue caused by contention

v Applications with low resource demand may be
blocked by those with high resource demand

v May also exists even with load-balancing schemes
m Energy inefficiency

4000
3500
3000
2500
2000

Compacting multiple
1500 small jObS on one
1000
500 I GPU saves energy
oo

Energy consumption (J)

o

.o '\/
\.\0 L
\’Oe Q\eé\) (f\
?‘\)

M single execution concurrent execution(2 app.)

m QOur goal is to design a scheduling scheme so
as to achieve better
v Load balance, energy efficiency, fairness

m Key idea: DCUDA

Dynamic scheduling

(Schedule after running,
fairness and energy
awareness)

Online migration

(running applications,
not executing kernels)

Background & Problems

DCUDA Design

Evaluation

Conclusion

NI NI N N

(1)) Overall Design

m DCUDA is implemented based on the API

forwarding framework

m Key three modules at the backend

v Monitor
e GPU utilization
e App’s resource demand

v Scheduler
e Load balance
e Energy efficiency
e Fairness

v Migrator
e Migration of running app

CUDA Applications

Iy

CUDA wrapper Library]
(APl interception)
I

N2,
Monitor

U

Scheduler

iy

Migrator

Daemon

L2
| Native CUDA Library |

4

(o) (o)~ (o) (o)

10

The Monitor

B Resource demand of each application

v GPU cores and GPU memory
v Key challenge: lightweight requirement

® Demand on GPU cores
v Existing tool (nvprof): large overhead (replay API calls)

Timer function Optimization

v’ Estimate only at the first time
when the kernel func is called

v Use the recorded info. next time

v' Rationale: GPU applications are
iteration-based

(Track info. only
from parameters
of intercepted API:
#blk, #threads)

11

X
% u
1958)|
E S
l”f;» « >3
ence qna e

B Demand on GPU memory
v Easy to know allocated mem, but not all mem. are used

m How to detect actual usage?
v Pointer check with cuPointerGetAttribute() + sampling

v False negative: miss identification of used mem
e On-demand paging (with unified mem support)

m Estimation of GPU utilization
v Periodically scan the resource demand of applications
v Aggregate them together

12

B A multi-stage and multi-object scheduling policy

App. App.
V \ First priority:
Load Balancing |.oad balance
Energy-efficient Fairness-based :
Scheduling Scheduling Case 1: (Sllghtly)
overloaded GPU
| Underloaded GPUs | | overloadedcpus | | Must avoid low-demand
 __(Afterloadbalancing) | 1 (After load balancing) _ | tasks being blocked

Case 2: Underloaded GPUs: Waste energy

13

(=) The Scheduler

B Load balance

v Which GPUs: check each GPU pair
e Feasible candidates: An overloaded + an underloaded
v Which applications to migrate
e Minimize migration frequency + avoid ping-pong effect
e Greedy: Migrate the most heavyweight and feasible applications

m Energy awareness

v Compact lightweight apps to fewer GPUs to save energy
m Fairness awareness: Grouping + time slicing

Tradeoff

Utilization vs fairness

@

Utilization
Mixed packing

¥

Fairness
Priority-based scheme

14

>

())) The Migrator

o,
;»%m

&
e and Ve

B Clone runtime

v Largest overhead: initializing libraries (>80%)
v Handle pooling: maintain a pool of libraries’ handles

for each GPU
m Migrate memory data

v Leverage unified memory: Able to immediately run

task without migrating data
v Transparently support
e Intercept APl and replace
v Pipeline
e Prefetch & on-demand paging

\
. App. |
Source GPU J

Data

Source GPU Mem.

'
Migrate
> App.
_ Target GPU
Access mem.
On-demand Vv
Migrate N .
vt Page Fault !
Prefetch at coTtoToos
Target GPU Mem.

15

>

())) The Migrator

oy &
', e
“ence gpa ve

B Resume computing tasks

v Two states of tasks: running and waiting
e Only migrate waiting tasks
v Sync to wait for the completion of all running tasks

v Redirect waiting tasks to target GPUs

o Orderpreserving —— = oo

Waiting | Waiting !
e FIFO queue LasKs L tasks |
FIFO queue I
barrier Sync. done

DCUDA DCUDA
Redirect
Syrl/ tasks
Running Waiting
tasks tasks

Src. GPU Target GPU Src. GPU Target GPU

T

16

Background & Problems

DCUDA Design

Evaluation

Conclusion

NI NI N N

() Experiment Setting

B Testbed

v Prototype implemented based on CUDA toolkit 8.0

v Four NVIDIA 1080Ti GPUs, each has 3584 cores and
12GB memory

m \Workload

v 20 benchmark programs which represent a majority of
GPU applications (HPC, DM, ML, Graph Alg, DL)

v Focus on randomly selected 50 sequences, each
combines the 20 programs with a fixed interval

m Baseline algorithm
v Least-loaded: most efficient static scheduling scheme

18

100%
o

80%

(o))
Q
=

40%

20%

Fraction of execution time

Q
=

Load Balance

100% - _ —
] :
£ 80%
c
=
3 60%
£
o]
B 40%
o
S
S 20%
fre
0%
GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2
0%-50% 50%-100% ™ Overloaded 0%-50% 50%-100% M Overloaded
(a) GPU load with Least-Loaded scheduling (b) GPU load with DCUDA

m Load states of GPU

v 0%-50% utilization, 50%-100% utilization, and
overloaded (demand > GPU cores)

B Overloaded time of each GPU

v Least-loaded: 14.3% - 51.4%
v DCUDA: within 6%

GPU3

19

3 H N
[4N

= g
19 8%

5 /7 g
: N/ &
%, Y

‘e and’ \’c\\\ﬁ‘

GPU Utilization

7y ¥

Zene,

--@-- Least-Loaded (static) = —«— DCUDA (dynamic)

85% --@--Least-Loaded (static) = —a—DCUDA (dynamic)

o 60%
S 80% E ,
= - 50% b | n » R
8 75% 3 A N BAY B Wi " R T
= 2 a0% L g /iy W wf
> 70% Y g e e a
5 o 1%] a B ¥ .
2 230% " & i u
 65% 2
& 209
& 60% | 5 20%
o ! =
I 55% S 10% MM‘V
]
50% < 0%
1 8 15 22 29 36 43 50 1 8 15 22 29 36 43 50
Application Sequence 1D Application Sequence ID
(a) Average GPU utilization (b) Proportion of overloaded time

m Improves average GPU utilization by 14.6%

B Reduce the overloaded time by 78.3% on
average (over the 50 sequences/workloads)

20

(=)) Application Execution Time

, --@--Least-Loaded (static) = —a— DCUDA (dynamic)

Normalized execution time
m
B
a
=
=
-
=
a
»
[1
B

1 8 15 22 29 36 43 50
Application Sequence ID

B Normalize the time to single execution

B DCUDA reduces the average execution time
by up t0 42.1%

21

Normalized execution time
D
U'I

1 I

||

Light Load Medium Load Heavy Load
M Least-Loaded (static) DCUDA (dynamic)

Average Execution Time

[

f Light Loady Medium Load Heavy Load

Least-Loaded

DCUDA

81201] 74935] 70611]
K 70449] 70921] 68771]

Energy Consumption

Impact of Different Loads

B Largest performance
Improvement in
medium load case

m Largest energy
saving in light load
case

22

Background & Problems

DCUDA Design

Evaluation

Conclusion

NI NI N N

) Conclusion & Future Work

m Static GPU scheduling algorithm in assigning
applications leads to load imbalance
v Low GPU utilization & high energy consumption

m \We develop DCUDA, a dynamic scheduling alg

v Monitors resource demand and util. w/ low overhead
v Supports migration of running applications
v Transparently supports all CUDA applications

m Limitation: DCUDA only considers scheduling
within a server and the resource of GPU cores

24

Q&A

Yongkun Li
vkli@ustc.edu.cn
http://staff.ustc.edu.cn/~ykli

25

