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(=) GPU Sharing and Scheduling

m GPUs are underloaded without sharing

v A server may contain multiple GPUs
v Each GPU contains thousands of cores

B GPU sharing allows multiple apps to run
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(-))) Current Scheduling Schemes
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B Current schemes are “static”

v Round-robin, prediction-based, least-loaded

v They only make the assignment of applications
before running them

m State-of-the-art: Least-loaded scheduling
v Assign new app to the GPU with the least load
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(-))) Limitations of Static Scheduling
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m | oad imbalance (least-loaded scheduling)
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The fraction of time in which at least one GPU is
overloaded and some other GPU is underloaded accounts
for up to 41.7% (overloaded: demand > GPU cores)
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(=) Limitations of Static Scheduling

®m \Why does static scheduling result in load
imbalance?

B Assign before running

New App.

v Hard to get exact
] resource demand
e v The assignment is not
GPU1 ] [ GPU2 ][ GPUN-1] [ GPUN ] optimal

[ 1]

B No migration support
v No way to adjust online




Limitations of Static Scheduling

B Fairness issue caused by contention

v Applications with low resource demand may be
blocked by those with high resource demand

v May also exists even with load-balancing schemes
m Energy inefficiency
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m QOur goal is to design a scheduling scheme so
as to achieve better
v Load balance, energy efficiency, fairness

m Key idea: DCUDA

Dynamic scheduling

(Schedule after running,
fairness and energy
awareness)

Online migration

(running applications,
not executing kernels)
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(1)) Overall Design

m DCUDA is implemented based on the API

forwarding framework

m Key three modules at the backend

v Monitor
e GPU utilization
e App’s resource demand

v Scheduler
e Load balance
e Energy efficiency
e Fairness

v Migrator
e Migration of running app

CUDA Applications
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The Monitor

B Resource demand of each application

v GPU cores and GPU memory
v Key challenge: lightweight requirement

® Demand on GPU cores
v Existing tool (nvprof): large overhead (replay API calls)

Timer function Optimization

v’ Estimate only at the first time
when the kernel func is called

v Use the recorded info. next time

v' Rationale: GPU applications are
iteration-based

(Track info. only
from parameters
of intercepted API:
#blk, #threads)
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B Demand on GPU memory
v Easy to know allocated mem, but not all mem. are used

m How to detect actual usage?
v Pointer check with cuPointerGetAttribute() + sampling

v False negative: miss identification of used mem
e On-demand paging (with unified mem support)

m Estimation of GPU utilization
v Periodically scan the resource demand of applications
v Aggregate them together
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B A multi-stage and multi-object scheduling policy

App. App.
V \ First priority:
Load Balancing |.oad balance
Energy-efficient Fairness-based :
Scheduling Scheduling Case 1: (Sllghtly)
overloaded GPU
| Underloaded GPUs | | overloadedcpus | | Must avoid low-demand
 __(Afterloadbalancing) | 1  (After load balancing) _ | tasks being blocked

Case 2: Underloaded GPUs: Waste energy
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(=) The Scheduler

B Load balance

v Which GPUs: check each GPU pair
e Feasible candidates: An overloaded + an underloaded
v Which applications to migrate
e Minimize migration frequency + avoid ping-pong effect
e Greedy: Migrate the most heavyweight and feasible applications

m Energy awareness

v Compact lightweight apps to fewer GPUs to save energy
m Fairness awareness: Grouping + time slicing

Tradeoff

Utilization vs fairness

@

Utilization
Mixed packing

¥

Fairness
Priority-based scheme
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())) The Migrator
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B Clone runtime

v Largest overhead: initializing libraries (>80%)
v Handle pooling: maintain a pool of libraries’ handles

for each GPU
m Migrate memory data

v Leverage unified memory: Able to immediately run

task without migrating data
v Transparently support
e Intercept APl and replace
v Pipeline
e Prefetch & on-demand paging

\
. App. |
Source GPU J

Data

Source GPU Mem.

'
Migrate
> App.
\_ Target GPU
Access mem.
On-demand Vv
Migrate N .
vt Page Fault !
Prefetch at coTtoToos
Target GPU Mem.
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B Resume computing tasks

v Two states of tasks: running and waiting
e Only migrate waiting tasks
v Sync to wait for the completion of all running tasks

v Redirect waiting tasks to target GPUs

o Orderpreserving  —— = oo

Waiting | Waiting !
e FIFO queue LasKs L tasks |
FIFO queue I
barrier Sync. done

DCUDA DCUDA
Redirect
Syrl/ tasks
Running Waiting
tasks tasks

Src. GPU  Target GPU Src. GPU  Target GPU

T
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() Experiment Setting

B Testbed

v Prototype implemented based on CUDA toolkit 8.0

v Four NVIDIA 1080Ti GPUs, each has 3584 cores and
12GB memory

m \Workload

v 20 benchmark programs which represent a majority of
GPU applications (HPC, DM, ML, Graph Alg, DL)

v Focus on randomly selected 50 sequences, each
combines the 20 programs with a fixed interval

m Baseline algorithm
v Least-loaded: most efficient static scheduling scheme
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m Load states of GPU

v 0%-50% utilization, 50%-100% utilization, and
overloaded (demand > GPU cores)

B Overloaded time of each GPU

v Least-loaded: 14.3% - 51.4%
v DCUDA: within 6%

GPU3
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m Improves average GPU utilization by 14.6%

B Reduce the overloaded time by 78.3% on
average (over the 50 sequences/workloads)
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(=)) Application Execution Time

, --@--Least-Loaded (static) = —a— DCUDA (dynamic)
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B Normalize the time to single execution

B DCUDA reduces the average execution time
by up t0 42.1%
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Normalized execution time
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Energy Consumption

Impact of Different Loads

B Largest performance
Improvement in
medium load case

m Largest energy
saving in light load
case
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) Conclusion & Future Work

m Static GPU scheduling algorithm in assigning
applications leads to load imbalance
v Low GPU utilization & high energy consumption

m \We develop DCUDA, a dynamic scheduling alg

v Monitors resource demand and util. w/ low overhead
v Supports migration of running applications
v Transparently supports all CUDA applications

m Limitation: DCUDA only considers scheduling
within a server and the resource of GPU cores
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