DCUDA: Dynamic GPU Scheduling with Live Migration Support

Fan Guo¹, <u>Yongkun Li¹</u>, John C.S. Lui², Yinlong Xu¹

¹University of Science and Technology of China ²The Chinese University of Hong Kong

GPUs are underloaded without sharing

- A server may contain multiple GPUs
- Each GPU contains thousands of cores
- GPU sharing allows multiple apps to run concurrently on one GPU

Current schemes are "static"

- Round-robin, prediction-based, least-loaded
- They only make the assignment of applications before running them
- State-of-the-art: Least-loaded scheduling
 - Assign new app to the GPU with the least load

Load imbalance (least-loaded scheduling)

The fraction of time in which at least one GPU is overloaded and some other GPU is underloaded accounts for up to 41.7% (overloaded: demand > GPU cores)

Why does static scheduling result in load imbalance?

Assign before running

- Hard to get exact resource demand
- The assignment is not optimal

No migration support

No way to adjust online

Fairness issue caused by contention

- Applications with low resource demand may be blocked by those with high resource demand
- \checkmark May also exists even with load-balancing schemes

Energy inefficiency

Compacting multiple small jobs on one GPU saves energy

Our goal is to design a scheduling scheme so as to achieve better

Load balance, energy efficiency, fairness

Key idea: DCUDA

DCUDA is implemented based on the API forwarding framework

Key three modules at the backend

- Monitor
 - GPU utilization
 - App's resource demand
- ✓ Scheduler
 - Load balance
 - Energy efficiency
 - Fairness
- ✓ Migrator
 - Migration of running app

Resource demand of each application

- ✓ GPU cores and GPU memory
- Key challenge: lightweight requirement
- Demand on GPU cores
 - Existing tool (nvprof): large overhead (replay API calls)

Timer function

(Track info. only from parameters of intercepted API: #blk, #threads)

Optimization

 ✓ Estimate only at the first time when the kernel func is called
✓ Use the recorded info. next time
✓ Rationale: GPU applications are iteration-based

Demand on GPU memory

Easy to know allocated mem, but not all mem. are used

How to detect actual usage?

- ✓ Pointer check with cuPointerGetAttribute() + sampling
- False negative: miss identification of used mem
 - On-demand paging (with unified mem support)

Estimation of GPU utilization

- Periodically scan the resource demand of applications
- Aggregate them together

A multi-stage and multi-object scheduling policy

Case 2: Underloaded GPUs: Waste energy

Load balance

Which GPUs: check each GPU pair

- Feasible candidates: An overloaded + an underloaded
- Which applications to migrate
 - Minimize migration frequency + avoid ping-pong effect
 - Greedy: Migrate the most heavyweight and feasible applications

Energy awareness

- Compact lightweight apps to fewer GPUs to save energy
- Fairness awareness: Grouping + time slicing

Clone runtime

- Largest overhead: initializing libraries (>80%)
- Handle pooling: maintain a pool of libraries' handles for each GPU
- Migrate memory data
 - Leverage unified memory: Able to immediately run task without migrating data
 - Transparently support
 - Intercept API and replace
 - ✓ Pipeline
 - Prefetch & on-demand paging

Resume computing tasks

- Two states of tasks: running and waiting
 - Only migrate waiting tasks
- Sync to wait for the completion of all running tasks
- Redirect waiting tasks to target GPUs
 - Order preserving
 - FIFO queue

Testbed

- Prototype implemented based on CUDA toolkit 8.0
- Four NVIDIA 1080Ti GPUs, each has 3584 cores and 12GB memory

Workload

- 20 benchmark programs which represent a majority of GPU applications (HPC, DM, ML, Graph Alg, DL)
- Focus on randomly selected 50 sequences, each combines the 20 programs with a fixed interval
- Baseline algorithm
 - Least-loaded: most efficient static scheduling scheme

Load states of GPU

- ✓ 0%-50% utilization, 50%-100% utilization, and overloaded (demand > GPU cores)
- Overloaded time of each GPU
 - ✓ Least-loaded: 14.3% 51.4%
 - DCUDA: within 6%

- Improves average GPU utilization by 14.6%
- Reduce the overloaded time by 78.3% on average (over the 50 sequences/workloads)

Normalize the time to single execution
DCUDA reduces the average execution time by up to 42.1%

Static GPU scheduling algorithm in assigning applications leads to load imbalance

Low GPU utilization & high energy consumption

We develop DCUDA, a dynamic scheduling alg

- Monitors resource demand and util. w/ low overhead
- Supports migration of running applications
- Transparently supports all CUDA applications
- Limitation: DCUDA only considers scheduling within a server and the resource of GPU cores

Q&A

Yongkun Li <u>ykli@ustc.edu.cn</u> http://staff.ustc.edu.cn/~ykli