
DCUDA: Dynamic GPU Scheduling with 
Live Migration Support

Fan Guo1, Yongkun Li1, John C.S. Lui2, Yinlong Xu1

1University of Science and Technology of China
2The Chinese University of Hong Kong



Outline

2

Background & Problems1

DCUDA Design2

Evaluation3

Conclusion4



n GPUs are underloaded without sharing
ü A server may contain multiple GPUs
ü Each GPU contains thousands of cores

n GPU sharing allows multiple apps to run 
concurrently on one GPU

3

GPU Sharing and Scheduling

GPU scheduling 
is necessary

App.

Frontend

App.

Frontend

Backend

Scheduler

GPU1 GPUN…

API

API

API

GPU2 GPUN-1

Load balance 
GPU utilization



n Current schemes are “static”
ü Round-robin, prediction-based, least-loaded
ü They only make the assignment of applications 

before running them
n State-of-the-art: Least-loaded scheduling

ü Assign new app to the GPU with the least load

4

Current Scheduling Schemes

New App.

Scheduler

GPU1 GPUN…
API

GPU2 GPUN-1



n Load imbalance (least-loaded scheduling)

5

Limitations of Static Scheduling

The fraction of time in which at least one GPU is 
overloaded and some other GPU is underloaded accounts 

for up to 41.7% (overloaded: demand > GPU cores)



n Why does static scheduling result in load 
imbalance?

6

Limitations of Static Scheduling

New App.

Scheduler

GPU1 GPUN…
API

GPU2 GPUN-1

n Assign before running
ü Hard to get exact 

resource demand
ü The assignment is not 

optimal
n No migration support

ü No way to adjust online



n Fairness issue caused by contention
ü Applications with low resource demand may be 

blocked by those with high resource demand 
ü May also exists even with load-balancing schemes

n Energy inefficiency

Limitations of Static Scheduling

7

0
500

1000
1500
2000
2500
3000
3500
4000

Triad
Kmeans

Mnist_
mlp BFS

Autoencoder
Sort

Reduction
cifar10

En
er

gy
 co

ns
um

pt
io

n 
(J)

single execution concurrent execution(2 app.)

Compacting multiple 
small jobs on one 

GPU saves energy



n Our goal is to design a scheduling scheme so 
as to achieve better 
ü Load balance, energy efficiency, fairness

n Key idea: DCUDA

n

8

Our Goal 

Dynamic scheduling

(Schedule after running, 
fairness and energy 

awareness) 

Online migration

(running applications, 
not executing kernels)



Outline

9

Background & Problems1

DCUDA Design2

Evaluation3

Conclusion4



n DCUDA is implemented based on the API 
forwarding framework

n Key three modules at the backend
ü Monitor

l GPU utilization
l App’s resource demand

ü Scheduler
l Load balance
l Energy efficiency
l Fairness

ü Migrator
l Migration of running app

10

Overall Design



n Resource demand of each application
ü GPU cores and GPU memory
ü Key challenge: lightweight requirement

n Demand on GPU cores 
ü Existing tool (nvprof): large overhead (replay API calls)

11

The Monitor

Timer function

(Track info. only 
from parameters 

of intercepted API:
#blk, #threads) 

Optimization

ü Estimate only at the first time 
when the kernel func is called

ü Use the recorded info. next time
ü Rationale: GPU applications are 

iteration-based 



n Demand on GPU memory
ü Easy to know allocated mem, but not all mem. are used

n How to detect actual usage?
ü Pointer check with cuPointerGetAttribute() + sampling
ü False negative: miss identification of used mem

l On-demand paging (with unified mem support)

n Estimation of GPU utilization
ü Periodically scan the resource demand of applications
ü Aggregate them together

12

The Monitor



n A multi-stage and multi-object scheduling policy

13

The Scheduler

Case 1: (Slightly) 
overloaded GPU

Must avoid low-demand 
tasks being blocked

First priority:
Load balance

Case 2: Underloaded GPUs: Waste energy



n Load balance
ü Which GPUs: check each GPU pair

l Feasible candidates: An overloaded + an underloaded
ü Which applications to migrate

l Minimize migration frequency + avoid ping-pong effect
l Greedy: Migrate the most heavyweight and feasible applications

n Energy awareness
ü Compact lightweight apps to fewer GPUs to save energy

n Fairness awareness: Grouping + time slicing

The Scheduler

14

Tradeoff
Utilization vs fairness

Utilization
Mixed packing

Fairness
Priority-based scheme



n Clone runtime
ü Largest overhead: initializing libraries (>80%)
ü Handle pooling: maintain a pool of libraries’ handles 

for each GPU
n Migrate memory data

ü Leverage unified memory: Able to immediately run 
task without migrating data

ü Transparently support
l Intercept API and replace

ü Pipeline
l Prefetch & on-demand paging

The Migrator

15



n Resume computing tasks
ü Two states of tasks: running and waiting

l Only migrate waiting tasks
ü Sync to wait for the completion of all running tasks
ü Redirect waiting tasks to target GPUs

l Order preserving 
l FIFO queue

The Migrator

16



Outline

17

Background & Problems1

DCUDA Design2

Evaluation3

Conclusion4



n Testbed
ü Prototype implemented based on CUDA toolkit 8.0
ü Four NVIDIA 1080Ti GPUs, each has 3584 cores and 

12GB memory
n Workload

ü 20 benchmark programs which represent a majority of 
GPU applications (HPC, DM, ML, Graph Alg, DL)

ü Focus on randomly selected 50 sequences, each 
combines the 20 programs with a fixed interval

n Baseline algorithm
ü Least-loaded: most efficient static scheduling scheme

18

Experiment Setting



n Load states of GPU
ü 0%-50% utilization, 50%-100% utilization, and 

overloaded (demand > GPU cores)
n Overloaded time of each GPU

ü Least-loaded: 14.3% - 51.4%
ü DCUDA: within 6%

19

Load Balance



n Improves average GPU utilization by 14.6%
n Reduce the overloaded time by 78.3% on 

average (over the 50 sequences/workloads)

20

GPU Utilization



n Normalize the time to single execution
n DCUDA reduces the average execution time 

by up to 42.1%
21

Application Execution Time



n Largest performance 
improvement in 
medium load case

22

Impact of Different Loads

Average Execution Time

Energy Consumption

n Largest energy 
saving in light load
case



Outline

23

Background & Problems1

DCUDA Design2

Evaluation3

Conclusion4



n Static GPU scheduling algorithm in assigning 
applications leads to load imbalance
ü Low GPU utilization & high energy consumption

n We develop DCUDA, a dynamic scheduling alg
ü Monitors resource demand and util. w/ low overhead
ü Supports migration of running applications
ü Transparently supports all CUDA applications

n Limitation: DCUDA only considers scheduling 
within a server and the resource of GPU cores

24

Conclusion & Future Work



Q&A

Yongkun Li
ykli@ustc.edu.cn

http://staff.ustc.edu.cn/~ykli

25

Thanks!


