
BurScale: Using Burstable Instances for Cost-Effective 
Autoscaling in the Public Cloud

Ata Fatahi, Timothy Zhu, Bhuvan Urgaonkar

1



Load
Variability

1 day Wikipedia access traceProblem and Motivation
• Context:

Autoscaling in the cloud

• Problem:
Uses expensive regular instances

• Solution:
Use cheaper burstable instances

Goal: Cost-effective autoscaling using burstable instances

Short-term
Burstiness

30 second Wikipedia access trace

SALE
UP TO

95%
OFF

2



Burstable Instances
• CPU capacity rate-limited by a token (credit) bucket mechanism

• Credits accrue at baseline rate up to max bucket size (24x baseline rate)
• 1 credit = 100% CPU utilization for 1 min

= 50% CPU utilization for 2 min

• Example: AWS t3.small accrues 24 credits/hour
= 0.4 credits/min
= 40% baseline CPU utilization

r

24 × r

Burstable instance = “Fractional” instance with burst capability

3



Burstable Instances
• CPU capacity rate-limited by a token (credit) bucket mechanism

• Credits accrue at baseline rate up to max bucket size (24x baseline rate)
• 1 credit = 100% CPU utilization for 1 min

= 50% CPU utilization for 2 min

• Example: AWS t3.small accrues 24 credits/hour
= 0.4 credits/min
= 40% baseline CPU utilization

r

24 × r

Burstable instance = “Fractional” instance with burst capability

Pros

• Cheaper (up to 95%)

Cons

• Performance is rate limited

• Ability to burst • More expensive than regular for performance

4



How to Effectively Use Burstable Instances?
1. How many burstable/regular instances to provision?

2. How to avoid running out of credits?

3. How to handle flash crowds?

5



Resource Provisioning
• Scaling policy

Determines # of instances (k)

• What is the minimum # instances?

R = λ / µ

• k > R for latency SLOs

• Square Root Staffing Rule Scaling Policy:
k = R + c√R

Idea: Use burstable instances for standby variable capacity

µ µ µ µ

k instances

Load Balancer

Arrival rate (λ)

Service rate

40 req/s

10 req/s

R instances k - R instances

µ µ µ

6



How to Avoid Running Out of Credits?
• Problem:

Burstable instances overused à run out of credits

• Solution:
Unbalance the load

• How to set weight w?

Solution: Monitor credits & Dynamically adjust weight to earn credits

µ µ µ µ

Load Balancer

Arrival rate (λ)

Service rate

40 req/s

10 req/s

R instances k - R instances

µ µ µ

k instances

Load Balancer
Weighted Join the Shortest Queue

w w w1 1 1 1

7



Flash Crowds
• Flash crowds are unpredictable sudden load increases

• Challenge:
Delay in acquiring and
warming up new resources

• Solution:
Overprovision capacity
(e.g., Netflix Project Nimble)

Idea: Use burstable instances for standby capacity

Provisioning
delay

Normal
Provisioning

(𝝀, R)

Flash Crowd
Provisioning 

(𝐦𝝀, 𝒎𝑹)

BurScale
(𝐦𝝀, 𝑹)

Overprovisioning

m

8



BurScale Design and Implementation
• Monitor:

• Collects system stats

• Scaling Policy:
• Determines cluster size

• Controller:
• Determines # burstable/regular instances
• Allocates/deallocates instances
• Detects flash crowds
• Adjusts load balancer weights

Burstable 
Pool

Regular 
Pool

Load 
Balancer

Amazon EC2 Instances

Cloud 
Watch

Amazon Web Services

BurScale

Monitor

Scaling Policy

Controller

MetricsMetrics

Metrics
# of instances

Metrics

Allocation
Request Allocation

Config

9



Evaluation
• Workload: WikiMedia application using Wikipedia access traces

• Regular instances: m5.large, 2 vCPUs, $0.096 / hr

• Burstable instances: t3.small, 2 vCPUs, $0.0208 / hr

• Moderate cluster size ranging from 20 to 70 instances

• Comparisons
• Reg-Only: Cluster of only regular instances
• BurScale: Combines burstable and regular instances

10



Handling Transient Queueing

BurScale saves 16.8% in costs

11



Handling Flash Crowds

BurScale saves 46.3% in costs

12



Conclusion
• Goal: Cost-effective autoscaling using burstable instances

• Challenge: avoid running out of CPU credits

• Solution: BurScale 
• Selects appropriate number of burstable instances
• Dynamically adjusts load balancer weights

• Results: BurScale saves cost while maintaining performance
• Evaluated under web applications, flash crowds, and stateful caches

BurScale is open-sourced at: https://github.com/psu-cloud/BurScale

µ µ µ µ

Load Balancer

Arrival rate (λ)

Service rate

R instances k - R instances

µ µ µ

k instances

Load Balancer
Weighted Join the Shortest Queue

w w w1 1 1 1

13


