BurScale: Using Burstable Instances for Cost-Effective
Autoscaling 1n the Public Cloud

Ata Fatahi, Timothy Zhu, Bhuvan Urgaonkar

COMPUTER SYSTEMS LAB

"‘o,’ PennState

Problem and Motivation

1 day Wikipedia access trace

* Context: 3000 -
Autoscaling in the cloud g
g 2% Load
T
€ 2000 | Variability
1500
, 0 ; 10 15 o 23
° PI‘Oblem. Time (hour)

Uses expensive regular instances

30 second Wikipedia access trace

Short-term
Burstiness

* Solution:
Use cheaper burstable instances

5 10 15 20 25
Time (second)

"‘o,’ PennState

Goal: Cost-effective autoscaling using burstable instances

Burstable Instances

o & &
-

* CPU capacity rate-limited by a token (credit) bucket mechanism

* Credits accrue at baseline rate up to max bucket size (24x baseline rate)
* 1 credit = 100% CPU utilization for 1 min
= 50% CPU utilization for 2 min

* Example: AWS t3.small accrues 24 credits/hour
= 0.4 credits/min
= 40% baseline CPU utilization

Burstable instance = “Fractional” instance with burst capability

"‘o,’ PennState

Pros Cons

* Cheaper (up to 95%) * Performance is rate limited

* Ability to burst * More expensive than regular for performance

How to Effectively Use Burstable Instances?

1. How many burstable/regular instances to provision?
2. How to avoid running out of credits?

3. How to handle flash crowds?

"‘o,’ PennState

Resource Provisioning

Scaling policy
Determines # of instances (k)

Arrival rate (L) 40 req/s

What is the minimum # instances?

R=A/pu

k > R for latency SLOs

Service rate
10 req/s | [\

1 1 1

R instancesk instances k - R instances

Square Root Staffing Rule Scaling Policy:
k=R +cVR

Idea: Use burstable instances for standby variable capacity

"‘o,, PennState

How to Avoid Running Out of Credits?

* Problem:
Burstable instances overused = run out of credits

Arrival rate (L) 40 req/s

e Solution;
Unbalance the load

Service rate
10 req/s |

1 1

R instances k - R instances
| |

* How to set weight w?

k instances

Solution: Monitor credits & Dynamically adjust weight to earn credits

"‘o,, PennState

Flash Crowds N T SRR b

* Flash crowds are unpredictable sudden load increases

Reqs/Sec

<
500 - Provisioning
delay
. 2I0 30 4'0 510 60
¢ Challenge. Time (minute)

Delay in acquiring and Normal
warming up new resources Qverpmwsmmng Provisioning
(4, R)
* Solution: l ' ' I I I I ‘ I l I Flasl} .Cr(fwd
. . : Provisioning
Overprovision capacity
(e.g., Netflix Project Nimble) I I I I I ‘ I l I I I

(mA, mR)
Idea: Use burstable instances for standby capacity
"‘o,’ PennState

BurScale
(mA, R)

BurScale Design and Implementation

 Monitor:

* Collects system stats

 Scaling Policy:

 Determines cluster size

e Controller:
* Determines # burstable/regular instances
» Allocates/deallocates instances
* Detects flash crowds

* Adjusts load balancer weights

BurScale

Scaling Policy

of instances
Metrics

: Monitor
ey o e N Metnics _ _ TR .

Allocation
Request

Burstable Regular Load
Pool Pool Balancer

Amazon EC2 Instances

Metrics Metrics

Amazon Web Services

"‘o,, PennState

Evaluation

Workload: WikiMedia application using Wikipedia access traces

Regular instances: m5.large, 2 vCPUs, $0.096 / hr

Burstable instances: t3.small, 2 vCPUs, $0.0208 / hr

Moderate cluster size ranging from 20 to 70 instances

Comparisons
* Reg-Only: Cluster of only regular instances

* BurScale: Combines burstable and regular instances

"‘o,, PennState

Handling Transient Queueing

Req/Sec (x103)

20

15

10

SLO —— BurScale

— Reg-OnIy]

[— BurScale

8 Reg-OnIy]

20

40

T T T

60 80 100
Time (min)

120 140

of CPU Credits

of Inststances
»
©

Cpu Util. (%)

(=)
(=]
I

N
(=]
L

[— All (k)

Regular

- Burstable]

(=)

100

[+]
(=]
1

)
(=}
]

»
(=}
1

N
(=]
!

Burstable]

65.0
62.5
60.0
57.5 1
55.0 +
52.5 1

50.0

(o) 20

BurScale saves 16.8% 1n costs

40

- ¥ PennState

60 80 100
Time (min)

120 140

Handling Flash Crowds

15.0
~ 12.5 - 3 60 -
]
= c
': 10.0 E
S— m .
v 7.5- 2 40
> e
2 5.0 -
o - [T,
O o 20
o .
s B sermyin [— All (k) -+ Regular - Burstable]
0.0 T T T T o T T T T T T
100
—~200 -
ié: 3 80 -
3.150 5 =~ 60 -
5 =
£100 - 2 a0-
- o
i o
— 20 -
g, 20 [--- Regular Burstable]
< SLO —— BurScale —_ Reg-OnIyI o
0 T T T T
65.0
£ 62.5
-
2 60.0 -
o
> 57.5 4
o
Y s55.0
)
. # 52.5
025 [— BurScale _— Reg-OnIy]
o.oo T T T T 50-0 T T T T T
o 60 80 100 120 140 o 20 40 60 80 100
Time (min) Time (min)
0/ :
BurScale saves 46.3% in costs
(3
-4 PennState

Conclusion Arrival rate (%)

Goal: Cost-effective autoscaling using burstable instances

Challenge: avoid running out of CPU credits

Solution: BurScale Service rate

* Selects appropriate number of burstable instances

e D ically adjusts load bal ight i
ynamically adjusts load balancer weights R instances k - R instances

k instances

Results: BurScale saves cost while maintaining performance

* Evaluated under web applications, flash crowds, and stateful caches

BurScale is open-sourced at: https://github.com/psu-cloud/BurScale

"‘o,, PennState

