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Problem and Motivation
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Goal: Cost-effective autoscaling using burstable instances



Burstable Instances
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* CPU capacity rate-limited by a token (credit) bucket mechanism

* Credits accrue at baseline rate up to max bucket size (24x baseline rate)
* 1 credit = 100% CPU utilization for 1 min
= 50% CPU utilization for 2 min

* Example: AWS t3.small accrues 24 credits/hour
= 0.4 credits/min
= 40% baseline CPU utilization

Burstable instance = “Fractional” instance with burst capability
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Pros Cons

* Cheaper (up to 95%) * Performance is rate limited

* Ability to burst * More expensive than regular for performance




How to Effectively Use Burstable Instances?

1. How many burstable/regular instances to provision?
2. How to avoid running out of credits?

3. How to handle flash crowds?
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Resource Provisioning

Scaling policy
Determines # of instances (k)

Arrival rate (L) 40 req/s

What is the minimum # instances?

R=A/pu

k > R for latency SLOs

Service rate
10 req/s | [\

1 1 1

R instancesk instances k - R instances

Square Root Staffing Rule Scaling Policy:
k=R +cVR

Idea: Use burstable instances for standby variable capacity
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How to Avoid Running Out of Credits?

* Problem:
Burstable instances overused = run out of credits

Arrival rate (L) 40 req/s

e Solution;
Unbalance the load

Service rate
10 req/s |

1 1

R instances k - R instances
| |

* How to set weight w?

k instances

Solution: Monitor credits & Dynamically adjust weight to earn credits
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Flash Crowds N T SRR b

* Flash crowds are unpredictable sudden load increases
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Idea: Use burstable instances for standby capacity
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BurScale Design and Implementation

 Monitor:

* Collects system stats

 Scaling Policy:

 Determines cluster size

e Controller:
* Determines # burstable/regular instances
» Allocates/deallocates instances
* Detects flash crowds

* Adjusts load balancer weights

BurScale

Scaling Policy

# of instances
Metrics

: Monitor
ey o e N Metnics _ _ TR .

Allocation
Request

Burstable Regular Load
Pool Pool Balancer

Amazon EC2 Instances

Metrics Metrics

Amazon Web Services
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Evaluation

Workload: WikiMedia application using Wikipedia access traces

Regular instances: m5.large, 2 vCPUs, $0.096 / hr

Burstable instances: t3.small, 2 vCPUs, $0.0208 / hr

Moderate cluster size ranging from 20 to 70 instances

Comparisons
* Reg-Only: Cluster of only regular instances

* BurScale: Combines burstable and regular instances
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Handling Transient Queueing

Req/Sec (x103)

20

15

10

SLO —— BurScale

— Reg-OnIy]

[— BurScale

8 Reg-OnIy]

20

40

T T T

60 80 100
Time (min)

120 140

# of CPU Credits

# of Inststances
»
©

Cpu Util. (%)

(=)
(=]
I

N
(=]
L

[— All (k)

Regular

- Burstable]

(=)

100

[+]
(=]
1

)
(=}
]

»
(=}
1

N
(=]
!

Burstable ]

65.0
62.5
60.0
57.5 1
55.0 +
52.5 1

50.0

(o) 20

BurScale saves 16.8% 1n costs

40

- ¥ PennState

60 80 100
Time (min)

120 140




Handling Flash Crowds
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Conclusion Arrival rate (%)

Goal: Cost-effective autoscaling using burstable instances

Challenge: avoid running out of CPU credits

Solution: BurScale Service rate

* Selects appropriate number of burstable instances

e D ically adjusts load bal ight i
ynamically adjusts load balancer weights R instances k - R instances

k instances

Results: BurScale saves cost while maintaining performance

* Evaluated under web applications, flash crowds, and stateful caches

BurScale is open-sourced at: https://github.com/psu-cloud/BurScale
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