HyperSched

Deadline-aware Scheduler for Model Development

Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou, Joseph E. Gonzalez, Ion Stoica, Alexey Tumanov

Data Science (Q

Boogle Inc.

Preprocessing Parameters???

Learning Rate?

Momentum??

Network Size?

Featurization?????

Learning Rate? Momentum?? Network Size? Preprocessing Parameters???? Featurization????? 0.5

How to optimize? Try Random Search

How to optimize? **Try Random Search**

Random Search for Hyper-Parameter Optimization

James Bergstra Yoshua Bengio

Département d'Informatique et de reche Université de Montréal

Computer Science > Machine Learning

Random Search and Reproducibility for Neural Architecture Search

Liam Li, Ameet Talwalkar

(Submitted on 20 Feb 2019 (v1), last revised 30 Jul 2019 (this version, v3))

Accuracy

Accuracy

Accuracy

GPUs

Time

Trials (sets of hyperparameters to evaluate)

Accuracy

Accuracy

Trials (sets of hyperparameters to evaluate)

Terri is faced with the decision choosing the right level of parallelism

Accuracy

Scheduling Problem?

Time

Scheduling Problem?

7

Instead of increasing

- DL cluster efficiency [OSDI 2018]
- Job Completion Time [NSDI 2019, EuroSys 2018]

Given finite time and compute resources, Scheduling Problem

Instead of increasing

- DL cluster efficiency [OSDI 2018]
- Job Completion Time [NSDI 2019, EuroSys 2018]

Given finite time and compute resources, Scheduling Problem

evaluate many random trials (configurations) Exploration Problem

Instead of increasing

- DL cluster efficiency [OSDI 2018]
- Job Completion Time [NSDI 2019, EuroSys 2018]

Given finite time and compute resources, Scheduling Problem

evaluate many random trials (configurations) Exploration Problem

to obtain the best trained model Exploitation Problem

HyperSched is an application-level scheduler for model development.

HyperSched is an application-level scheduler for model development.

Balances explore and exploit by adaptively allocating resources based on:

HyperSched is an application-level scheduler for model development.

- - Awareness of resource constraints

• Balances explore and exploit by adaptively allocating resources based on:

HyperSched is an application-level scheduler for model development.

- - Awareness of resource constraints
 - Awareness of training objectives

• Balances explore and exploit by adaptively allocating resources based on:

- Each trial is iterative and returns intermediate results

- Each trial is iterative and returns intermediate results
- Trials can be checkpointed during training.

- Each trial is iterative and returns intermediate results
- Trials can be checkpointed during training.
- All trials share the same objective. Care only about 1 model.

Time

- Each trial is iterative and returns intermediate results
- Trials can be checkpointed during training.
- All trials share the same objective. Care only about 1 model.
- Model training can be accelerated by parallelizing/ distributing its workload (data parallelism).

Time

How to use allocation for exploration and exploitation

GPU

TIME

GPU

Exploration

Exploration

Exploitation

4 Layer CNN on CIFAR10 - Mukkamala, ICML2017

Problem: Initial Performance is a weak proxy of final behavior

4 Layer CNN on CIFAR10 - Mukkamala, ICML2017

Naive Solution: Static Space/Time Allocation

TIME

Naive Solution: Static Space/Time Allocation

TIME

TIME

Naive Solution: Static Space/Time Allocation

Main problem: Cannot rely on initial performance.

optimal resource allocation.

- Distributed hyperparameter tuning algorithm based off

- Distributed hyperparameter tuning algorithm based off optimal resource allocation.
- SOTA results over other existing algorithms

- Distributed hyperparameter tuning algorithm based off optimal resource allocation.
- SOTA results over other existing algorithms
- Deployed on many AutoML offerings today

- *r*: min. epoch
- R: max epoch
- **n (eta):** Balance explore/exploit
- **Intuition:** Progressively allocate more resources to promising trials

- *r*: min. epoch
- R: max epoch
- **n** (eta): Balance explore/exploit
- **Intuition**: Progressively allocate more resources to promising trials

trial.iter < R: trial.run_one_epoch()

- *r*: min. epoch
- R: max epoch
- **n** (eta): Balance explore/exploit
- **Intuition**: Progressively allocate more resources to promising trials

trial.iter < R: trial.run_one_epoch() trial.iter == LIMIT:

- *r*: min. epoch
- R: max epoch
- *n* (eta): Balance explore/exploit
- **Intuition**: Progressively allocate more resources to promising trials

trial.iter < R: trial.run_one_epoch() trial.iter == LIMIT: if is_top(trial, LIMIT, 1/η):

- *r*: min. epoch
- R: max epoch
- *n* (eta): Balance explore/exploit
- **Intuition**: Progressively allocate more resources to promising trials

trial.run_one_epoch() trial.iter == LIMIT: if is_top(trial, LIMIT, 1/η): LIMIT $*= \eta$

- *r*: min. epoch
- R: max epoch
- *n* (eta): Balance explore/exploit
- **Intuition**: Progressively allocate more resources to promising trials

- *r*: min. epoch
- R: max epoch
- *n (eta):* Balance explore/exploit
- **Intuition**: Progressively allocate more resources to promising trials

Better Solution: Asynchronous Successive Halving Algorithm (ASHA) [Li2018] **Benefit: Mitigate noisy initial performance** by adaptive allocation

Better Solution: Asynchronous Successive Halving Algorithm (ASHA) [Li2018] **Benefit: Mitigate noisy initial performance** by adaptive allocation How to improve? Accuracy

Better Solution: Asynchronous Successive Halving Algorithm (ASHA) [Li2018] **Benefit: Mitigate noisy initial performance** by adaptive allocation How to improve? Accuracy 0 0 9 0

1. Build on ASHA's adaptive allocation

Build on ASHA's adaptive allocation Avoid starting trials close to deadline

- near deadline to maximize accuracy
- 1. Build on ASHA's adaptive allocation 2. Avoid starting trials close to deadline 3. Consolidate parallel resources to top trial

HyperSched: Early Termination Build on ASHA's adaptive allocation.

From ASHA:

- Balance explore/exploit with parameter **n**
- Mitigate problem of noisy initial performance

- Evaluate trials for min. epoch r - up to max epoch R

HyperSched: Admission Policy Avoid starting trials close to deadline

TIME

- η: Explore/exploit parameter
- R: max epoch

TIME

HyperSched: Admission Policy Avoid starting trials close to deadline

HyperSched: Admission Policy Avoid starting trials close to deadline

TIME

- R: max epoch
- *n*: Explore/exploit parameter
- Intuition: Only start trials if they have a chance of beating incumbent

def should_start_trial(): return Tleft > min(furthest_trial().time * η, base_epoch_time*R)

HyperSched: Resource Reallocation Dynamically allocate parallel resources to final trials

TIME

HyperSched: Resource Reallocation Dynamically allocate parallel resources to final trials

- Uniform Allocation of available resources

HyperSched: Resource Reallocation Dynamically allocate parallel resources to final trials

- Uniform Allocation of available resources
- Resize by checkpointing and starting again with more parallel workers

Accuracy TIME def on_result(trial): should_stop(trial): update_allocation() should_resize(trial): ckpt = trial.checkpoint() set_allocation(trial) trial.restart(ckpt)

HyperSched leverages Ray **Tune's scheduler API** Search Algorithm **HyperSched** 📮 allenai / allentune 1 Pull reques <> Code () Issues 2 Trainable Trainable Trainable Hyperparameter Search for AllenNLP Trainable http://tune.io/

JOB RESULT

tune

HyperSched Implementation

SCHEDULER DECISION

 Trials return intermediate information (performance, overhead)

HyperSched Implementation

SCHEDULER DECISION

- Trials return intermediate information (performance, overhead)
- Maintains internal allocation mapping and deadline timer

SCHEDULER DECISION

- Trials return intermediate information (performance, overhead)
- Maintains internal allocation mapping and deadline timer
- Uses Tune Scheduling APIs for execution (resizing, checkpointing, pausing, etc).

- Trials return intermediate information (performance, overhead)
- Maintains internal allocation mapping and deadline timer
- Uses Tune Scheduling APIs for execution (resizing, checkpointing, pausing, etc).
 - Does not manage physical placement decisions

Overview of HyperSched Results For more results, see paper + poster.
Setup:

- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10
- 144 different hyperparameter configurations

CIFAR10 Experiment

<u>https://github.com/kuangliu/pytorch-cifar</u> (2.3k stars) 28

Setup:

- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10
- 144 different hyperparameter configurations

CIFAR10 Experiment

https://github.com/kuangliu/pytorch-cifar (2.3k stars) 28

Setup:

- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10
- 144 different hyperparameter configurations

CIFAR10 Experiment

GPUs Allocated vs Time

28

<u>https://github.com/kuangliu/pytorch-cifar</u> (2.3k stars)

Setup:

- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10
- 144 different hyperparameter configurations

CIFAR10 Experiment

GPUs Allocated vs Time

28

https://github.com/kuangliu/pytorch-cifar (2.3k stars)

Setup:

- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10
- 144 different hyperparameter configurations

CIFAR10 Experiment

GPUs Allocated vs Time

Achieve 93.84% Val (original repo 93.57%)

28

https://github.com/kuangliu/pytorch-cifar (2.3k stars)

- 144 different configurations

- ResNet50 model on CIFAR10, (8 V100 GPUs)

- 144 different configurations

ResNet50 model on CIFAR10, (8 V100 GPUs)

- 144 different configurations

ResNet50 model on CIFAR10, (8 V100 GPUs)

HyperSched outperforms ASHA across a variety of deadlines by evaluating less trials and exploiting existing trials

HyperSched Summary

- based model development
- the-art parameter tuning algorithms

HyperSched is an application-level scheduler for deadline-

 HyperSched uses constraint-awareness and is informed by application-level objectives to increase model accuracy

Our evaluation shows HyperSched outperforms state-of-

HyperSched Summary

- HyperSched is an application-level scheduler for deadlinebased model development
- HyperSched uses constraint-awareness and is informed by application-level objectives to increase model accuracy
- Our evaluation shows HyperSched outperforms state-ofthe-art parameter tuning algorithms

Thank you! Questions?