
HyperSched
Deadline-aware Scheduler for Model Development

Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou,

Joseph E. Gonzalez, Ion Stoica, Alexey Tumanov

�1

!2

Boogle Inc.

Data Science @

!2

!3

!3

Learning Rate?

Momentum??

Network Size?

Preprocessing Parameters???

Featurization?????

!3

LLearning Rate?

Momentum??

Network Size?

Preprocessing Parameters???

Featurization?????

!3

How to optimize?
Try Random Search

!4

How to optimize?
Try Random Search

!4

GPUs

Time

Ac
cu

ra
cy

Time

Terri is faced with the decision
choosing the right level of parallelism

Trials (sets of hyperparameters to evaluate)!5

GPUs

Time

Ac
cu

ra
cy

Time

Terri is faced with the decision
choosing the right level of parallelism

Trials (sets of hyperparameters to evaluate)!5

GPUs

Time

Ac
cu

ra
cy

Time

Terri is faced with the decision
choosing the right level of parallelism

Trials (sets of hyperparameters to evaluate)!5

GPUs

Time

Ac
cu

ra
cy

Time

Terri is faced with the decision
choosing the right level of parallelism

Trials (sets of hyperparameters to evaluate)!5

GPUs

Time

Accuracy

Time

Terri is faced with the decision
choosing the right level of parallelism

Trials (sets of hyperparameters to evaluate)!6

GPUs

Time

Accuracy

Time

Terri is faced with the decision
choosing the right level of parallelism

Trials (sets of hyperparameters to evaluate)!6

GPUs

Time

Accuracy

Time

DEADLINES EXIST

Scheduling Problem?

!7

GPUs

Time

Accuracy

Time

DEADLINES EXIST

Scheduling Problem?

!7

Given finite time and
compute resources,

Scheduling ProblemInstead of increasing

- DL cluster efficiency
 [OSDI 2018]
- Job Completion Time
 [NSDI 2019, EuroSys 2018]

!8

Given finite time and
compute resources,

Scheduling Problem

evaluate many random
trials (configurations)

Exploration Problem

Instead of increasing

- DL cluster efficiency
 [OSDI 2018]
- Job Completion Time
 [NSDI 2019, EuroSys 2018]

!8

Given finite time and
compute resources,

Scheduling Problem

evaluate many random
trials (configurations)

Exploration Problem

to obtain
the best trained model

Exploitation Problem

Instead of increasing

- DL cluster efficiency
 [OSDI 2018]
- Job Completion Time
 [NSDI 2019, EuroSys 2018]

!8

HyperSched is an application-level
scheduler for model development.

!9

• Balances explore and exploit by adaptively allocating resources based on:

HyperSched is an application-level
scheduler for model development.

!9

• Balances explore and exploit by adaptively allocating resources based on:

• Awareness of resource constraints

HyperSched is an application-level
scheduler for model development.

G

PU

TIME
!9

• Balances explore and exploit by adaptively allocating resources based on:

• Awareness of resource constraints

• Awareness of training objectives

HyperSched is an application-level
scheduler for model development.

G

PU

TIME TIME
Ac

cu
ra

cy
!9

Properties/Assumptions of
model development workloads

!10

Properties/Assumptions of
model development workloads

Model development consists of evaluating many trials.

!10

Properties/Assumptions of
model development workloads

Model development consists of evaluating many trials.

• Each trial is iterative and returns intermediate results

!10

Properties/Assumptions of
model development workloads

Model development consists of evaluating many trials.

• Each trial is iterative and returns intermediate results

• Trials can be checkpointed during training.

!10

Ac
cu

ra
cy

Time

Properties/Assumptions of
model development workloads

Model development consists of evaluating many trials.

• Each trial is iterative and returns intermediate results

• Trials can be checkpointed during training.

• All trials share the same objective. Care only about 1
model.

!10

Ac
cu

ra
cy

Time

Properties/Assumptions of
model development workloads

Model development consists of evaluating many trials.

• Each trial is iterative and returns intermediate results

• Trials can be checkpointed during training.

• All trials share the same objective. Care only about 1
model.

• Model training can be accelerated by parallelizing/
distributing its workload (data parallelism).

!10

GPU

TIME

How to use allocation for
exploration and exploitation

!11

Naive Approach: Static
Space/Time Allocation

GPU

TIME
!12

Naive Approach: Static
Space/Time Allocation

GPU

TIME

Exploration

!12

Naive Approach: Static
Space/Time Allocation

GPU

TIME

Exploration

Exploitation

!12

4 Layer CNN on CIFAR10 - Mukkamala, ICML20174 Layer CNN on CIFAR10 - Mukkamala, ICML2017

Naive Approach: Static
Space/Time Allocation

!13

4 Layer CNN on CIFAR10 - Mukkamala, ICML2017

Problem: Initial
Performance is a

weak proxy of
final behavior

Naive Approach: Static
Space/Time Allocation

!13

Naive Solution: Static
Space/Time Allocation

TIME

Underallocate
exploration…

!14

GPU

TIME
!14

Naive Solution: Static
Space/Time Allocation

TIME

… or underallocate
exploitation

!15

GPU

TIME
!15

Naive Solution: Static
Space/Time Allocation

Main problem: Cannot rely on
initial performance.

!16

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

!17

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

- Distributed hyperparameter tuning algorithm based off
optimal resource allocation.

!17

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

- Distributed hyperparameter tuning algorithm based off
optimal resource allocation.

- SOTA results over other existing algorithms

!17

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

- Distributed hyperparameter tuning algorithm based off
optimal resource allocation.

- SOTA results over other existing algorithms

- Deployed on many AutoML offerings today

!17

r
r

η * r
η * r

η * η * r

GPU

TIME
TIME

Ac
cu

ra
cy

- r: min. epoch
- R: max epoch

- η (eta): Balance explore/exploit

- Intuition: Progressively allocate more

resources to promising trials

* Simplified
representation

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

!18

r
r

η * r
η * r

η * η * r

GPU

TIME
TIME

Ac
cu

ra
cy

LIMIT = r
while trial.iter < R:
 trial.run_one_epoch()- r: min. epoch

- R: max epoch

- η (eta): Balance explore/exploit

- Intuition: Progressively allocate more

resources to promising trials

* Simplified
representation

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

!18

r
r

η * r
η * r

η * η * r

GPU

TIME
TIME

Ac
cu

ra
cy

LIMIT = r
while trial.iter < R:
 trial.run_one_epoch()
 if trial.iter == LIMIT:

- r: min. epoch
- R: max epoch

- η (eta): Balance explore/exploit

- Intuition: Progressively allocate more

resources to promising trials

* Simplified
representation

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

!18

r
r

η * r
η * r

η * η * r

GPU

TIME
TIME

Ac
cu

ra
cy

LIMIT = r
while trial.iter < R:
 trial.run_one_epoch()
 if trial.iter == LIMIT:
 if is_top(trial, LIMIT, 1/η):

- r: min. epoch
- R: max epoch

- η (eta): Balance explore/exploit

- Intuition: Progressively allocate more

resources to promising trials

* Simplified
representation

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

!18

r
r

η * r
η * r

η * η * r

GPU

TIME
TIME

Ac
cu

ra
cy

LIMIT = r
while trial.iter < R:
 trial.run_one_epoch()
 if trial.iter == LIMIT:
 if is_top(trial, LIMIT, 1/η):
 LIMIT *= η

- r: min. epoch
- R: max epoch

- η (eta): Balance explore/exploit

- Intuition: Progressively allocate more

resources to promising trials

* Simplified
representation

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

!18

r
r

η * r
η * r

η * η * r

GPU

TIME
TIME

Ac
cu

ra
cy

LIMIT = r
while trial.iter < R:
 trial.run_one_epoch()
 if trial.iter == LIMIT:
 if is_top(trial, LIMIT, 1/η):
 LIMIT *= η
 else:

- r: min. epoch
- R: max epoch

- η (eta): Balance explore/exploit

- Intuition: Progressively allocate more

resources to promising trials

* Simplified
representation

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

!18

r
r

η * r
η * r

η * η * r

GPU

TIME
TIME

Ac
cu

ra
cy

LIMIT = r
while trial.iter < R:
 trial.run_one_epoch()
 if trial.iter == LIMIT:
 if is_top(trial, LIMIT, 1/η):
 LIMIT *= η
 else:
 # allow new trials to start
 trial.pause(); break

- r: min. epoch
- R: max epoch

- η (eta): Balance explore/exploit

- Intuition: Progressively allocate more

resources to promising trials

* Simplified
representation

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

!18

Benefit: Mitigate noisy initial performance
by adaptive allocation

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

TIME

Ac
cu

ra
cy

!19

How to improve?

Benefit: Mitigate noisy initial performance
by adaptive allocation

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

TIME

Ac
cu

ra
cy

!19

How to improve?

Benefit: Mitigate noisy initial performance
by adaptive allocation

Better Solution:
Asynchronous Successive

Halving Algorithm (ASHA) [Li2018]

TIME

Ac
cu

ra
cy

!19

HyperSched Solution

!20

HyperSched Solution

1. Build on ASHA’s adaptive allocation

!20

HyperSched Solution

1. Build on ASHA’s adaptive allocation
2. Avoid starting trials close to deadline

!20

HyperSched Solution

1. Build on ASHA’s adaptive allocation
2. Avoid starting trials close to deadline
3. Consolidate parallel resources to top trial
near deadline to maximize accuracy

!20

HyperSched: Early Termination
Build on ASHA’s adaptive allocation.

From ASHA:
- Evaluate trials for min. epoch r - up to max epoch R

- Balance explore/exploit with parameter η
- Mitigate problem of noisy initial performance

GPU

TIME TIME

Ac
cu

ra
cy

!21

HyperSched: Admission Policy
Avoid starting trials close to deadline

GPU

TIME TIME

Ac
cu

ra
cy

!22

HyperSched: Admission Policy
Avoid starting trials close to deadline

- R: max epoch
- η: Explore/exploit parameter

GPU

TIME TIME

Ac
cu

ra
cy

!22

HyperSched: Admission Policy
Avoid starting trials close to deadline

- R: max epoch
- η: Explore/exploit parameter
- Intuition: Only start trials if

they have a chance of
beating incumbent

GPU

TIME TIME

Ac
cu

ra
cy

def should_start_trial(): 
 return Tleft > min(
 furthest_trial().time * η,
 base_epoch_time*R)

!22

HyperSched: Resource Reallocation
Dynamically allocate parallel resources to final trials

GPU

TIME TIME

Ac
cu

ra
cy

!23

HyperSched: Resource Reallocation
Dynamically allocate parallel resources to final trials

GPU

TIME TIME

Ac
cu

ra
cy

def on_result(trial):
 if should_stop(trial):
 update_allocation()
 return

- Uniform Allocation of available
resources

!23

HyperSched: Resource Reallocation
Dynamically allocate parallel resources to final trials

GPU

TIME TIME

Ac
cu

ra
cy

def on_result(trial):
 if should_stop(trial):
 update_allocation()
 return
 elif should_resize(trial):
 ckpt = trial.checkpoint()
 set_allocation(trial)
 trial.restart(ckpt)

- Uniform Allocation of available
resources

- Resize by checkpointing and starting
again with more parallel workers

!23

HyperSched Implementation

!24

HyperSched leverages Ray
Tune’s scheduler API

HyperSched

http://tune.io/
!25

http://tune.io/

HyperSched Implementation
HyperSched

ti ⇒ ri

GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU

JOB
RESULT

SCHEDULER
DECISION

W2

W W W

W

W

W

W W

W

W W

t3⇒ r4

t1⇒ r1 t2⇒ r2

t4⇒ r4

1

2

3

 26

HyperSched Implementation
HyperSched

ti ⇒ ri

GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU

JOB
RESULT

SCHEDULER
DECISION

W2

W W W

W

W

W

W W

W

W W

t3⇒ r4

t1⇒ r1 t2⇒ r2

t4⇒ r4

1

2

3

• Trials return intermediate
information (performance,
overhead)

 26

HyperSched Implementation
HyperSched

ti ⇒ ri

GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU

JOB
RESULT

SCHEDULER
DECISION

W2

W W W

W

W

W

W W

W

W W

t3⇒ r4

t1⇒ r1 t2⇒ r2

t4⇒ r4

1

2

3

• Trials return intermediate
information (performance,
overhead)

• Maintains internal allocation
mapping and deadline timer

 26

HyperSched Implementation
HyperSched

ti ⇒ ri

GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU

JOB
RESULT

SCHEDULER
DECISION

W2

W W W

W

W

W

W W

W

W W

t3⇒ r4

t1⇒ r1 t2⇒ r2

t4⇒ r4

1

2

3

• Trials return intermediate
information (performance,
overhead)

• Maintains internal allocation
mapping and deadline timer

• Uses Tune Scheduling APIs
for execution (resizing,
checkpointing, pausing,
etc).

 26

HyperSched Implementation
HyperSched

ti ⇒ ri

GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU GPU

GPU

JOB
RESULT

SCHEDULER
DECISION

W2

W W W

W

W

W

W W

W

W W

t3⇒ r4

t1⇒ r1 t2⇒ r2

t4⇒ r4

1

2

3
• Does not manage physical

placement decisions

• Trials return intermediate
information (performance,
overhead)

• Maintains internal allocation
mapping and deadline timer

• Uses Tune Scheduling APIs
for execution (resizing,
checkpointing, pausing,
etc).

 26

Overview of
HyperSched Results

For more results, see paper + poster.

!27

CIFAR10 Experiment

Setup:
- 1 hour deadline, 8 GPUs (V100)

- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

https://github.com/kuangliu/pytorch-cifar (2.3k stars)!28

https://github.com/kuangliu/pytorch-cifar

CIFAR10 Experiment

Setup:
- 1 hour deadline, 8 GPUs (V100)

- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

0

0.2

0.4

0.6

0.8

1

Accuracy vs Time

Va
lid

at
io

n
Ac

cu
ra

cy

Time (s)
0 3000

https://github.com/kuangliu/pytorch-cifar (2.3k stars)!28

https://github.com/kuangliu/pytorch-cifar

CIFAR10 Experiment

Setup:
- 1 hour deadline, 8 GPUs (V100)

- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

0

2

4

6

8

GPUs Allocated vs Time

G
PU

s
pe

r t
ria

l

Time (s)

0 3000
0

0.2

0.4

0.6

0.8

1

Accuracy vs Time

Va
lid

at
io

n
Ac

cu
ra

cy

Time (s)
0 3000

https://github.com/kuangliu/pytorch-cifar (2.3k stars)!28

https://github.com/kuangliu/pytorch-cifar

CIFAR10 Experiment

Setup:
- 1 hour deadline, 8 GPUs (V100)

- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

0

2

4

6

8

GPUs Allocated vs Time

G
PU

s
pe

r t
ria

l

Time (s)

0 3000

0

0.2

0.4

0.6

0.8

1

Accuracy vs Time
Va

lid
at

io
n

Ac
cu

ra
cy Mitigates noisy initial

performance

https://github.com/kuangliu/pytorch-cifar (2.3k stars)!28

https://github.com/kuangliu/pytorch-cifar

CIFAR10 Experiment

Setup:
- 1 hour deadline, 8 GPUs (V100)

- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

0

2

4

6

8

GPUs Allocated vs Time

G
PU

s
pe

r t
ria

l

Time (s)

0 3000
0

0.2

0.4

0.6

0.8

1

Accuracy vs Time

Va
lid

at
io

n
Ac

cu
ra

cy

Time (s)
0 3000

Mitigates noisy initial
performance

https://github.com/kuangliu/pytorch-cifar (2.3k stars)!28

https://github.com/kuangliu/pytorch-cifar

CIFAR10 Experiment

Setup:
- 1 hour deadline, 8 GPUs (V100)

- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

0

2

4

6

8

GPUs Allocated vs Time

G
PU

s
pe

r t
ria

l

Time (s)

0 3000
0

0.2

0.4

0.6

0.8

1

Accuracy vs Time

Va
lid

at
io

n
Ac

cu
ra

cy

Time (s)
0 3000

Mitigates noisy initial
performance

Achieve 93.84% Val
(original repo 93.57%)

https://github.com/kuangliu/pytorch-cifar (2.3k stars)!28

https://github.com/kuangliu/pytorch-cifar

Performance across deadlines

- ResNet50 model on CIFAR10, (8 V100 GPUs)

- 144 different configurations

!29

Performance across deadlines

- ResNet50 model on CIFAR10, (8 V100 GPUs)

- 144 different configurations

Ac
cu

ra
cy

0.7

0.775

0.85

0.925

1

Deadline (s)
900 (s) 1800 (s) 3600 (s)

ASHA HyperSched

!29

Performance across deadlines

- ResNet50 model on CIFAR10, (8 V100 GPUs)

- 144 different configurations

Ac
cu

ra
cy

0.7

0.775

0.85

0.925

1

Deadline (s)
900 (s) 1800 (s) 3600 (s)

ASHA HyperSched

Time (s)
M

ax
 A

cc
ur

ac
y

!29

Performance across deadlines

- ResNet50 model on CIFAR10, (8 V100 GPUs)

- 144 different configurations

HyperSched outperforms ASHA across a variety of deadlines by
evaluating less trials and exploiting existing trials

Ac
cu

ra
cy

0.7

0.775

0.85

0.925

1

Deadline (s)
900 (s) 1800 (s) 3600 (s)

ASHA HyperSched

Tr
ia

ls
 E

va
lu

at
ed

0

22.5

45

67.5

90

Deadline (s)
900 (s) 1800 (s) 3600 (s)

ASHA HyperSched

Time (s)
M

ax
 A

cc
ur

ac
y

!29

HyperSched Summary
• HyperSched is an application-level scheduler for deadline-

based model development

• HyperSched uses constraint-awareness and is informed by
application-level objectives to increase model accuracy

• Our evaluation shows HyperSched outperforms state-of-
the-art parameter tuning algorithms

!30

HyperSched Summary
• HyperSched is an application-level scheduler for deadline-

based model development

• HyperSched uses constraint-awareness and is informed by
application-level objectives to increase model accuracy

• Our evaluation shows HyperSched outperforms state-of-
the-art parameter tuning algorithms

Thank you! Questions?
!30

!31

