HyperSched

Deadline-aware Scheduler for Model Development

Richard Liaw, Romil Bhardwaj, Lisa Dunlap, Yitian Zou,
Joseph E. Gonzalez, lon Stoica, Alexey Tumanov

drise

UC Berkeley

Learning Rate?
Momenfume?

Nefwork Size?

Preprocessing Parameters???

—~——_

<m?roc~em r

5
: ﬁ)
-

1

¥

Learning Rate?

n V

’

menfumre?

letwork Size?

araaeferse oo

3.5

How to optimize?
Try Random Search

Random Search

h ‘/\/J
T,

-

v

- O

©

e

©

o

r= O

©

+ @,

O o ©O

. @

E O
-

-

Important parameter

How to optimize?
Try Random Search

Random Search

2.5 —
: O
1.5 “
1 Q

& O
; (C
—
(©

O
O
Random Search for Hyper-Parameter Optimization O
Y U) N R—

James Bergstra Computer Science > Machine Learning

Yoshua Bengio Random Search and Reproducibility for Neural Architecture Search

Département d’Informatique et de reche Liam Li, Ameet Talwalkar

(Submitted on 20 Feb 2019 (v1), last revised 30 Jul 2019 (this version, v3))
A

Universite de Montreal

Terri Is faced with the decision
choosing the right level of parallelism

EEEENENN

OOooom.
EEEEEERE

< ElEENEEE

Time
Time

Trials (sets of hyperparameters to evaluate)

Terri Is faced with the decision
choosing the right level of parallelism

ENEN
- ENEE

EREN
EEEN

Accuracy

Time

Trials (sets of hyperparameters to evaluate)

Terri Is faced with the decision
choosing the right level of parallelism

ENEN
- ENEE

EREN
EEEN

Accuracy

Time

Trials (sets of hyperparameters to evaluate)

Terri Is faced with the decision
choosing the right level of parallelism

Accuracy

GPUs

Time

Trials (sets of hyperparameters to evaluate)

Terri Is faced with the decision
choosing the right level of parallelism

I
OO
JEEERER
EEEEEE

Time

Trials (sefs of hyperparameters to evaluate)

Terri Is faced with the decision
choosing the right level of parallelism

EEEEE
= A %

—————————————————

Time

Time

Trials (sefs of hyperparameters to evaluate)

—h—__,_,._’—

. DEADLINES EXIST B

e ————— e e — v—w ———— e — I —

Accuracy /

GPUs

Time

Scheduling Problem?

-

| DEADLINES EXIST

:_’__‘———»——'_W e

.... . . . Accuracy
GPUs ... %
e

Time
Time

Scheduling Problem?

Given finite time and

compute resources,
Scheduling Problem

Instead of increasing

- DL cluster efficiency
[OSDI 2018]

- Job Completion Time
[INSDI 2019, EuroSys 2018]

Instead of increasing

- DL cluster efficiency
[OSDI 2018]

- Job Completion Time
[INSDI 2019, EuroSys 2018]

Given finite time and

compute resources,
Scheduling Problem

evaluate many random
trials (configurations)

Exploration Problem

Instead of increasing

- DL cluster efficiency
[OSDI 2018]

- Job Completion Time
[INSDI 2019, EuroSys 2018]

Given finite time and

compute resources,
Scheduling Problem

evaluate many random
trials (configurations)

Exploration Problem

to obtain
the best model

Exploitation Problem

HyperSched is an application-level
scheduler for model development.

HyperSched is an application-level
scheduler for model development.

e Balances explore and exploit by adaptively allocating resources based on:

HyperSched is an application-level
scheduler for model development.

e Balances explore and exploit by adaptively allocating resources based on:

e Awareness of resource constraints

ﬁ
TIME

GPU

9

HyperSched is an application-level
scheduler for model development.

e Balances explore and exploit by adaptively allocating resources based on:

e Awareness of resource constraints

e Awareness of training objectives

GPU
Accuracy

TIME TIME

Properties/Assumptions of
model development workloads

Properties/Assumptions of
model development workloads

Model development consists of evaluating many trials.

10

Properties/Assumptions of
model development workloads

Model development consists of evaluating many trials.

e Each trnial is iterative and returns intermediate results

10

Properties/Assumptions of
model development workloads

Model development consists of evaluating many trials.
e Each trnial is iterative and returns intermediate results

e J[rials can be checkpointed during training.

10

Properties/Assumptions of
model development workloads

Model development consists of evaluating many trials.
e Each trnial is iterative and returns intermediate results

e J[rials can be checkpointed during training.

Accuracy

e All trials share the same objective. Care only about
model. Time

10

Properties/Assumptions of
model development workloads

Model development consists of evaluating many trials.
e Each trnial is iterative and returns intermediate results

e J[rials can be checkpointed during training.

Accuracy

e All trials share the same objective. Care only about
model. Time

e Model training can be accelerated by parallelizing/
distributing its workload (data parallelism).

10

How to use allocation for
exploration and exploitation

EEEEEN
mEEEEEN
EEEEEN
EEEEEN

Naive Approach: Static
Space/Time Allocation

Naive Approach: Static
Space/Time Allocation

N\‘ ‘. 3 " ‘ J-Q‘-: . .

"". o <. R - »
T % P
¢ ~t iR) ‘q_',. ,’, - u v
TR e SN v 4

-.; "’q - .») ..",_-" ,,,

A .o o .' -7 . hd 73 2

¢

Naive Approach: Static
Space/Time Allocation

Exploitation

GPU

(: Y 35 -~ .
h > - . [
VIR o . -".’ 6 . u
BEey. - ’ B
' .} A ., < 'v it .‘-" V7 4
S 5 o ' 4 ¢
D fon o om0 , 24
g 3

TIME
12

Naive Approach: Static
Space/Time Allocation

0.72 . e e
0.70 //’I”"
5 0.68
5
o
<
" 0.66 SGD
= — Adam
0.64 — Adagrad
- RMSProp
— RMSProp (Ours)
0.62 —— SC-RMSProp
- SC-Adagrad
0.60
1 50 100 150 200

Epoch

4 Layer CNN on CIFAR10 - Mukkamala, ICML2017
13

Naive Approach: Static
Space/Time Allocation

Problem: Initial 070 sy

Performance is a_.- o ue|
weak proxy of — s
final behavior — e

1 50 100 150 200
Epoch

4 Layer CNN on CIFAR10 - Mukkamala, ICML2017
13

Naive Solution: Static
Space/Time Allocation

Underallocate
exploration...

GPU

-

TIME TIME

Naive Solution: Static
Space/Time Allocation

... Or underallocate
exploitation

Naive Solution: Static
Space/Time Allocation

Main problem: Cannot rely on
Initial performance.

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

17

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

- Distributed hyperparameter tuning algorithm based oft
optimal resource allocation.

17

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

- Distributed hyperparameter tuning algorithm based oft
optimal resource allocation.

- SOTA results over other existing algorithms

17

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

- Distributed hyperparameter tuning algorithm based oft
optimal resource allocation.

- SOTA results over other existing algorithms

- Deployed on many AutoML offerings today

17

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

nr] 1l
. - | | ol
]|
oo N

TIME

Accuracy

W/ /0/ *Simpli[fi?d
Y T "

TIME

r: min. epoch

R: max epoch

n (eta): Balance explore/exploit
Intuition: Progressively allocate more
resources to promising trials

18

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

nr] 1l
. - | | ol
]|
oo N

Accuracy

W/ /0/ *Simpli[fi?d
¥ g

TIME
TIME
LIMIT =r
_ trial.iter < R:
r: min. epoch trial.run_one_epoch()

R: max epoch

n (eta): Balance explore/exploit
Intuition: Progressively allocate more
resources to promising trials

18

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

nr] 1l
. - | | ol
]|
oo N

Accuracy

W/ /0/ *Simpli[fi?d
¥ g

TIME
TIME
LIMIT =r
_ trial.iter < R:
r: min. epoch trial.run_one_epoch()
R: max epoch trial.iter == LIMIT:

n (eta): Balance explore/exploit
Intuition: Progressively allocate more
resources to promising trials

18

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

nr] 1l
. - | | ol
]|
oo N

Accuracy

W/ /0/ *Simpli[fi?d
Y e

TIME
TIME
LIMIT =r
_ trial.iter < R:
r: min. epoch trial.run_one_epoch()
R: max epoch trial.iter == LIMIT:

is top(trial, LIMIT, 1/n):

n (eta): Balance explore/exploit
Intuition: Progressively allocate more
resources to promising trials

18

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

nr] 1l
. - | | ol
]|
oo N

Accuracy

W/ /0/ *Simpli[fi?d
Y T "

TIME
TIME
LIMIT = r
_ trial.iter < R:
r: min. epoch trial.run_one_epoch()
R: max epoch trial.iter == LIMIT:
n (eta): Balance explore/exploit ‘ifﬁgg(;f;‘:l’ LIMIT, 1/n):

Intuition: Progressively allocate more
resources to promising trials

18

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

nr] 1l
. - | | ol
]|
oo N

Accuracy

W/ /0/ *Simpli[fi?d
Y e

TIME
TIME
LIMIT =r
_ trial.iter < R:
r: min. epoch trial.run_one_epoch()
R: max epoch trial.iter == LIMIT:

is top(trial, LIMIT, 1/n):
LIMIT *= n

n (eta): Balance explore/exploit
Intuition: Progressively allocate more
resources to promising trials

18

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

nr] 1l
. - | | ol
]|
oo N

Accuracy

W/ /0/ *Simpli[fi?d
Y e

TIME
TIME
LIMIT =r
_ trial.iter < R:
r: min. epoch trial.run_one_epoch()
R: max epoch trial.iter == LIMIT:

is top(trial, LIMIT, 1/n):

n (eta): Balance explore/exploit LIMIT *= n

Intuition: Progressively allocate more
resources to promising trials

allow new trials to start
18 trial.pause();

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

Accuracy

0:\
%
%f\
‘\:\\\

=
o
m

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

How to improve?

Accuracy

Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

How to improve?

Accuracy

HyperSched Solution

HyperSched Solution

1. Build on ASHA’s adaptive allocation

HyperSched Solution

1. Build on ASHA’s adaptive allocation
2. Avoid starting trials close to deadline

HyperSched Solution

1. Build on ASHA’s adaptive allocation
2. Avoid starting trials close to deadline

3. Consolidate parallel resources to top trial
near deadline to maximize accuracy

HyperSched: Early Termination

Build on ASHA’s adaptive allocation.

. |

Accuracy

TIME TIME

From ASHA:
- Evaluate trials for min. epoch r - up to max epoch R

- Balance explore/exploit with parameter n
- Mitigate problem of noisy initial performance

21

HyperSched: Admission Policy

Avold starting trials close to deadline

Accuracy

HyperSched: Admission Policy

Avold starting trials close to deadline

Accuracy

TIME TIME

- R: max epoch
- n: Explore/exploit parameter

22

HyperSched: Admission Policy

Avold starting trials close to deadline

>
(&)
o
S
(&)
<
??//
r 0/
TIME TIME

- R: max epoch
- n: Explore/exploit parameter

- Intuition: Only start trials if furthest trial().time * n,

they have a chance of base epoch time*R)
beating incumbent _ _

should start trial():
Tieft > min(

22

HyperSched: Resource Reallocation

Dynamically allocate parallel resources to final trials

.

Accuracy

TIME TIME

HyperSched: Resource Reallocation

Dynamically allocate parallel resources to final trials

. |

TIME

Accuracy

on_result(trial):
_ _ _ should stop(trial):
- Uniform Allocation of available update allocation()

resources

23

HyperSched: Resource Reallocation

Dynamically allocate parallel resources to final trials

. |

Accuracy

TIME
on_result(trial):
_ _ _ should stop(trial):
- Uniform Allocation of available update allocation()
resources bould ize(trial)
. L . should _resize(trial):
- Resllze k;y checkpointing and starting ckpt = trial.checkpoint()
again with more parallel workers set_allocation(trial)

trial.restart(ckpt)

23

HyperSched Implementation

HyperSched leverages Ray
Tune’s scheduler API

030V AR

_ JPMorgan
Tune

Trainable’ | Trainable ' ‘Trainable

P

allenai / allentune

Algorithm

=" Microsoft

{> Code Issues 2 Pull reques

Hyperparameter Search for AllenNLP et

Trainable Trainable Trainable Trainable Trainable Trainable

Trainable Trainable

Trainable Trainable

Trainable Trainable

http://tune.io/

25

http://tune.io/

HyperSched Implementation

GPU GPU GPU

GPU GPU GPU GPU GPU
tune 7 .

HyperSched Implementation

e Trials return intermediate
information (performance,
overhead)

SCHEDULER
DECISION

g JoB &
% RESULT

A LEa)
.'~' >‘-

HyperSched Implementa

e Trials return intermediate

: : ,%;;g;dzgy SCHEDULER
information (performance, ¥ o 3 DECISION

% RESULT %

overhead)

e Maintains internal allocation
mapping and deadline timer

HyperSched Implementation

* Trials return intermediate
information (performance, $ o 3
overhead)

M % SCHEDULER ¥
%\ DECISioN #

¥ RESULT 2

e Maintains internal allocation
mapping and deadline timer

e Uses Tune Scheduling APls
for execution (resizing,
checkpointing, pausing,

etc).
g

tune

GPU

20

HyperSched Implementation

e Trials return intermediate

information (performance, N uoouen 4
overhead) gresuT 4

e Maintains internal allocation
mapping and deadline timer

e Uses Tune Scheduling APls
for execution (resizing,
checkpointing, pausing,
etc).

e Does not manage physical \
placement decisions

tune

GPU

20

Overview of
HyperSched Results

For more results, see paper + poster.

CIFAR10 Experiment

Setup:

- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

28 https://github.com/kuangliu/pytorch-cifar (2.3k stars)

https://github.com/kuangliu/pytorch-cifar

CIFAR10 Experiment

Accuracy vs Time

—\

>

(&

© 08 ‘

-

<

g 0.4 77

= T,

S Ve (L.

©® O

> 0 3000

Time (s)

Setup:

- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10
- 144 different hyperparameter configurations

28 https://github.com/kuangliu/pytorch-cifar (2.3k stars)

https://github.com/kuangliu/pytorch-cifar

CIFAR10 Experiment

Accuracy vs Time GPUs Allocated vs Time
1
) 3
© 08 | —
S ©
Q 06 /- £ 6
< o
g 0.4 77 o 4
= / / L
. ’ -
©® O T
> @ 3000 O 0 2000
Time (s) Time (s)
Setup:

- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10
- 144 different hyperparameter configurations

28 https://github.com/kuangliu/pytorch-cifar (2.3k stars)

https://github.com/kuangliu/pytorch-cifar

Accuracy vs

Mitigates noisy initial
performance

Q

https://github.com/kuangliu/pytorch-cifar

CIFAR10 Experiment

Accuracy vs Time GPUs Allocated vs Time

—\

>
(&
© 0.8 | —
- ©

al = . = =g = 0
§ 26 /- / Mitigates noisy initial -
c 04 77 rf 8 4
5 performance o
.IC-G' 0.2 //, /’ - 2
O el o Q.
s ° 5 3000 0 0 L

0 3000
Time (s) Time (s)

Setup:
- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

28 https://github.com/kuangliu/pytorch-cifar (2.3k stars)

https://github.com/kuangliu/pytorch-cifar

CIFAR10 Experiment

Accuracy vs Time GPUs Allocated vs Time

—\

>
(&)
E ‘ -
-] 1Y)

al = . = =g = 0
;3 2O /- / Mitigates noisy initial -
c 04 17 rf 8 4
5 performance S
.IC-G' 0.2 //, / ’ - 2
O el . o
S " 3000 0 0 [

0 3000
Time (s) Time (s)

Setup:
- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

Achieve 93.84% Val
(original repo 93.57 %)

28 https://github.com/kuangliu/pytorch-cifar (2.3k stars)

https://github.com/kuangliu/pytorch-cifar

Performance across deadlines

- ResNet50 model on CIFAR10, (8 V100 GPUSs)

- 144 different configurations

Accuracy

Performance across deadlines

B ASHA [HyperSched
,

0.925
0.85

0.775

0.7

900 (s) 1800(s) 3600 (s)

Deadline (s)

- ResNet50 model on CIFAR10, (8 V100 GPUSs)

- 144 different configurations

29

Accuracy

Performance across deadlines

B ASHA [HyperSched
,

> 0.8
0.925 ©
S 07
3]
0.85 O
<{ 06
0.775 S ASHA
S 05
5 Hyper
0.7 0.4
900 (s) 1800 (s) 3600 (s) ™ 100 200 300 400 500 600 700 800 900

Deadline (s) Time (s)

- ResNet50 model on CIFAR10, (8 V100 GPUSs)

- 144 different configurations

29

Accuracy

Performance across deadlines

B ASHA [HyperSched B ASHA [HyperSched

1 90
> 0.8 O

0.925 @ L 67.5
3 0.7 (_33

0.85 &J - bt 45
X o

0.775 g . e ASHA & 225
E ' > Hyper =

0.7 0.4 0

900 (s) 1800 (s) 3600 (s) 100 200 300 400 500 600 700 800 900 900 (s) 1800 (s) 3600 (s)
Deadline (s) Time (s) Deadline (s)

HyperSched outperforms ASHA across a variety of deadlines by

evaluating less trials and exploiting existing trials

29

HyperSched Summary

e HyperSched is an application-level scheduler for deadline-
based model development

e HyperSched uses constraint-awareness and is informed by
application-level objectives to increase model accuracy

e QOur evaluation shows HyperSched outperforms state-of-
the-art parameter tuning algorithms

30

HyperSched Summary

e HyperSched is an application-level scheduler for deadline-
based model development

e HyperSched uses constraint-awareness and is informed by
application-level objectives to increase model accuracy

e QOur evaluation shows HyperSched outperforms state-of-
the-art parameter tuning algorithms

Thank you! Questions?

30

31

