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Given finite time and 
compute resources,

Scheduling Problem

evaluate many random 
trials (configurations)

Exploration Problem

to obtain  
the best trained model

Exploitation Problem

Instead of increasing  

- DL cluster efficiency  
  [OSDI 2018]  
- Job Completion Time  
  [NSDI 2019, EuroSys 2018]
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• Balances explore and exploit by adaptively allocating resources based on:

• Awareness of resource constraints

• Awareness of training objectives

HyperSched is an application-level 
scheduler for model development.  
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Properties/Assumptions of 
model development workloads

Model development consists of evaluating many trials.

• Each trial is iterative and returns intermediate results

• Trials can be checkpointed during training.

• All trials share the same objective. Care only about 1 
model.

• Model training can be accelerated by parallelizing/
distributing its workload (data parallelism).
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4 Layer CNN on CIFAR10 - Mukkamala, ICML2017

Problem: Initial 
Performance is a 

weak proxy of 
final behavior 

Naive Approach: Static 
Space/Time Allocation
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Naive Solution: Static 
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Naive Solution: Static 
Space/Time Allocation

Main problem:  Cannot rely on 
initial performance.
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Better Solution:  
Asynchronous Successive  

Halving Algorithm (ASHA) [Li2018]

- Distributed hyperparameter tuning algorithm based off 
optimal resource allocation.

- SOTA results over other existing algorithms

- Deployed on many AutoML offerings today
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        if is_top(trial, LIMIT, 1/η):
            LIMIT *= η
        else: 

- r: min. epoch  
- R: max epoch

- η (eta): Balance explore/exploit

- Intuition: Progressively allocate more 

resources to promising trials

* Simplified 
representation

Better Solution:  
Asynchronous Successive  

Halving Algorithm (ASHA) [Li2018]

!18



r
r

η * r
η * r

η * η * r

# GPU

TIME
TIME

Ac
cu

ra
cy

LIMIT = r
while trial.iter < R:
    trial.run_one_epoch()
    if trial.iter == LIMIT:
        if is_top(trial, LIMIT, 1/η):
            LIMIT *= η
        else: 
            # allow new trials to start
            trial.pause(); break
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HyperSched Solution

1. Build on ASHA’s adaptive allocation
2. Avoid starting trials close to deadline
3. Consolidate parallel resources to top trial 
near deadline to maximize accuracy
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HyperSched: Early Termination
Build on ASHA’s adaptive allocation.

From ASHA: 
- Evaluate trials for min. epoch r  - up to max epoch R

- Balance explore/exploit with parameter η 
- Mitigate problem of noisy initial performance
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HyperSched: Admission Policy
Avoid starting trials close to deadline

- R: max epoch 
- η: Explore/exploit parameter
- Intuition: Only start trials if 

they have a chance of 
beating incumbent
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def should_start_trial(): 
    return Tleft > min( 
        furthest_trial().time * η, 
        base_epoch_time*R)
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Dynamically allocate parallel resources to final trials
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        return

- Uniform Allocation of available 
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HyperSched: Resource Reallocation
Dynamically allocate parallel resources to final trials

# GPU

TIME TIME
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def on_result(trial):
    if should_stop(trial):
        update_allocation()
        return
    elif should_resize(trial):
        ckpt = trial.checkpoint()
        set_allocation(trial)
        trial.restart(ckpt)     

- Uniform Allocation of available 
resources

- Resize by checkpointing and starting 
again with more parallel workers
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HyperSched Implementation
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HyperSched leverages Ray 
Tune’s scheduler API

HyperSched

http://tune.io/
!25
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• Does not manage physical 

placement decisions

• Trials return intermediate 
information (performance, 
overhead)

• Maintains internal allocation  
mapping and deadline timer

• Uses Tune Scheduling APIs 
for execution (resizing, 
checkpointing, pausing, 
etc).
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Overview of 
HyperSched Results

For more results, see paper + poster.
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CIFAR10 Experiment

Setup: 
- 1 hour deadline, 8 GPUs (V100)

- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

https://github.com/kuangliu/pytorch-cifar (2.3k stars)!28
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Performance across deadlines

- ResNet50 model on CIFAR10, (8 V100 GPUs)


- 144 different configurations

HyperSched outperforms ASHA across a variety of deadlines by 
evaluating less trials and exploiting existing trials
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HyperSched Summary
• HyperSched is an application-level scheduler for deadline-

based model development


• HyperSched uses constraint-awareness and is informed by 
application-level objectives to increase model accuracy


• Our evaluation shows HyperSched outperforms state-of-
the-art parameter tuning algorithms
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HyperSched Summary
• HyperSched is an application-level scheduler for deadline-

based model development


• HyperSched uses constraint-awareness and is informed by 
application-level objectives to increase model accuracy


• Our evaluation shows HyperSched outperforms state-of-
the-art parameter tuning algorithms

Thank you! Questions?
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