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How to optimize?
Try Random Search
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Given finite time and

compute resources,
Scheduling Problem

Instead of increasing

- DL cluster efficiency
[OSDI 2018]

- Job Completion Time
[INSDI 2019, EuroSys 2018]
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Instead of increasing

- DL cluster efficiency
[OSDI 2018]

- Job Completion Time
[INSDI 2019, EuroSys 2018]

Given finite time and

compute resources,
Scheduling Problem

evaluate many random
trials (configurations)

Exploration Problem

to obtain
the best model

Exploitation Problem
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HyperSched is an application-level
scheduler for model development.

e Balances explore and exploit by adaptively allocating resources based on:

e Awareness of resource constraints

e Awareness of training objectives
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Properties/Assumptions of
model development workloads

Model development consists of evaluating many trials.
e Each trnial is iterative and returns intermediate results

e J[rials can be checkpointed during training.

Accuracy

e All trials share the same objective. Care only about
model. Time

e Model training can be accelerated by parallelizing/
distributing its workload (data parallelism).
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Naive Approach: Static
Space/Time Allocation
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Naive Approach: Static
Space/Time Allocation
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Naive Approach: Static
Space/Time Allocation
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Naive Approach: Static
Space/Time Allocation

Problem: Initial 070 sy

Performance is a_.- o ue|
weak proxy of — s
final behavior — e
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13



Naive Solution: Static
Space/Time Allocation

Underallocate
exploration...
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Naive Solution: Static
Space/Time Allocation

... Or underallocate
exploitation




Naive Solution: Static
Space/Time Allocation

Main problem: Cannot rely on
Initial performance.
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Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]

- Distributed hyperparameter tuning algorithm based oft
optimal resource allocation.

- SOTA results over other existing algorithms

- Deployed on many AutoML offerings today
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R: max epoch trial.iter == LIMIT:

is top(trial, LIMIT, 1/n):
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Intuition: Progressively allocate more
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Better Solution:

Asynchronous Successive
Halving Algorithm (ASHA) [Li2018]
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r: min. epoch trial.run_one_epoch()
R: max epoch trial.iter == LIMIT:

is top(trial, LIMIT, 1/n):

n (eta): Balance explore/exploit LIMIT *= n

Intuition: Progressively allocate more
resources to promising trials

# allow new trials to start
18 trial.pause();
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HyperSched Solution

1. Build on ASHA’s adaptive allocation
2. Avoid starting trials close to deadline

3. Consolidate parallel resources to top trial
near deadline to maximize accuracy



HyperSched: Early Termination

Build on ASHA’s adaptive allocation.

. |

Accuracy

TIME TIME

From ASHA:
- Evaluate trials for min. epoch r - up to max epoch R

- Balance explore/exploit with parameter n
- Mitigate problem of noisy initial performance
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HyperSched: Admission Policy

Avold starting trials close to deadline
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- Intuition: Only start trials if furthest trial().time * n,
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HyperSched: Resource Reallocation

Dynamically allocate parallel resources to final trials
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on_result(trial):
_ _ _ should stop(trial):
- Uniform Allocation of available update allocation()

resources
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HyperSched: Resource Reallocation

Dynamically allocate parallel resources to final trials

. |

Accuracy

TIME
on_result(trial):
_ _ _ should stop(trial):
- Uniform Allocation of available update allocation()
resources bould ize(trial)
. L . should _resize(trial):
- Resllze k;y checkpointing and starting ckpt = trial.checkpoint()
again with more parallel workers set_allocation(trial)

trial.restart(ckpt)
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HyperSched leverages Ray
Tune’s scheduler API
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HyperSched Implementation
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GPU GPU GPU GPU GPU
tune 7 .




HyperSched Implementation

e Trials return intermediate
information (performance,
overhead)
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* Trials return intermediate
information (performance, $ o 3
overhead)
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mapping and deadline timer
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for execution (resizing,
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HyperSched Implementation

e Trials return intermediate

information (performance, N uoouen 4
overhead) gresuT 4

e Maintains internal allocation
mapping and deadline timer

e Uses Tune Scheduling APls
for execution (resizing,
checkpointing, pausing,
etc).

e Does not manage physical \
placement decisions

tune

GPU
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Overview of
HyperSched Results

For more results, see paper + poster.



CIFAR10 Experiment

Setup:

- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

28 https://github.com/kuangliu/pytorch-cifar (2.3k stars)
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CIFAR10 Experiment
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- 144 different hyperparameter configurations
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CIFAR10 Experiment

Accuracy vs Time GPUs Allocated vs Time
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Setup:
- 1 hour deadline, 8 GPUs (V100)
- Resnet50 on CIFAR10

- 144 different hyperparameter configurations

Achieve 93.84% Val
(original repo 93.57 %)

28 https://github.com/kuangliu/pytorch-cifar (2.3k stars)
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Performance across deadlines

- ResNet50 model on CIFAR10, (8 V100 GPUSs)

- 144 different configurations
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Performance across deadlines
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Performance across deadlines
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HyperSched outperforms ASHA across a variety of deadlines by

evaluating less trials and exploiting existing trials
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HyperSched Summary

e HyperSched is an application-level scheduler for deadline-
based model development

e HyperSched uses constraint-awareness and is informed by
application-level objectives to increase model accuracy

e QOur evaluation shows HyperSched outperforms state-of-
the-art parameter tuning algorithms
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HyperSched Summary

e HyperSched is an application-level scheduler for deadline-
based model development

e HyperSched uses constraint-awareness and is informed by
application-level objectives to increase model accuracy

e QOur evaluation shows HyperSched outperforms state-of-
the-art parameter tuning algorithms

Thank you! Questions?
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