BigDL: A Distributed Deep Learning
Framework for Big Data

Jason (Jinquan) Dai’, Yiheng Wang? *, Xin Qiu’, Ding Ding’, Yao Zhang3 *,
Yanzhang Wang?, Xianyan Jia#*, Cherry (Li) Zhang', Yan Wan#*, Zhichao Li’,
Jiao Wang', Shengsheng Huang', Zhongyuan Wu', Yang Wang', Yuhao Yang’,
Bowen She’, Dongjie Shi', Qi Lu’, Kai Huang', Guogiong Song’

TIntel, 2Tencent, 3Sequoia Capital, “Alibaba, * Work was done when the author

worked at Intel SOCC 2019



Agenda

 Motivation

* BigDL Execution Model
* Experimental Evaluation
* Real-World Applications

 Future Work

S0OCC 2019



Real-World ML/DL Systems Are
Complex Big Data Analytics Pipelines

Machine
Data -
Verification Resource Monitoring
i Management
Configuration Data Collection Senving

Infrastructure
Code Analysis Tools

Feature Process
Extraction Management Tools

Figure 1: Only a small fraction of real-world ML systems is composed of the ML code, as shown
by the small black box in the middle. The required surrounding infrastructure is vast and complex.

“*Hidden Technical Debt in Machine Learning Systems”,
Sculley et al., Google, NIPS 2015 Paper

SOCC 2019



Big Data Analysis Challenges

Real-World data analytics and deep learning pipelines are challenging

* Deep learning benchmarks (ImageNet, SQuUAD , etc.)
» Curated and explicitly labelled Dataset
» Suitable for dedicated DL systems

* Real-world production data pipeline
* Dynamic, messy (and possibly implicitly labeled) dataset
+ Suitable for integrated data analytics and DL pipelines using BigDL

* Problems with “connector approaches”
* TFX, TensorFlowOnSpark, Project Hydrogen, etc.
+ Adaptation overheads, impedance mismatch

SOCC 2019



BigDL Execution Model



Distributed Training in BigDL

Data Parallel, Synchronous Mini-Batch SGD

Prepare training data as an RDD of Samples
Construct an RDD of models (each being a replica of the original model)

for (1 <- 1 to N) {
//”model forward-backward” job
for each task in the Spark job:
read the latest weights
get a random batch of data from local Sample partition
compute errors (forward on local model replica)
compute gradients (backward on local model replica)

//”parameter synchronization” job
aggregate (sum) all the gradients
update the weights per specified optimization method

S0OCC 2019



Data Parallel Training

Worker 1 Worker 2 Worker n
Partition 1 Partition 2 sample Partition n
)< RDD \
Task 1/ Task 2 \
/ \ Task n: zip Sample and
\ model RDDs, and compute
\ / gradient on co-located
N\ Sample and model partitions
Partition 1 Partition 2 3< Model | partitionn f
RDD

“Model Forward-Backward” Job

SOCC 2019



Parameter Synchronization

local gradient local gradient local gradient

p

gradie

weig

b
nt 11 1 gradient 2 | 2 gradie
update update
ht 1 :|' weight 2 ; weig
Task 1 Task 2

“Parameter Synchronization” Job

SOCC 2019



Parameter Synchronization

For each task n in the ”“parameter synchronization” job {
shuffle the nt? partition of all gradients to this task
aggregate (sum) the gradients

updates the n®? partition of the weights
broadcast the nt? partition of the updated weights

“Parameter Synchronization” Job
(managing nt" partition of the parameters - similar to a parameter server)

AllReduce Operation (directly on top of primitives in Spark)
» Gradient aggregation: shuffle

» Weight sync: task-side broadcast

* In-memory persistence
S0CC 2019



Difference vs. Classical AllReduce

Classical AllReduce architecture
* Multiple long-running, potentially
stateful tasks

* Interact with each other (in a blocking
fashion for synchronization)

* Require fine-grained data access and in-
place data mutation

* Not directly supported by existing big
data systems

BigDL implementation

* Run a series of short-lived Spark jobs
(e.g., two jobs per mini-batch)

« Each task in the job is stateless and
non-blocking

« Automatically adapt to the dynamic
resource changes (e.g., preemption,
failures, resource sharing, etc.)

 Built on top of existing primitives in
Spark (e.g., shuffle, broadcast, and in-
memory data persistence)

SOCC 2019



Experimental Evaluation

S0OCC 2019



Computing Performance

Speed Comparison
Reference PyTorch NCF vs. BigDL NCF

NCF training on single node:
* PyTorch 0.4 on Nvidia

S : 1.6x

é P100 GPU

S 1 * BigDL 0.7.0 and Spark

I 2.1.0 on a dual-socket

3 Intel Skylake 8180 server
& (56 cores and 384GB )

Reference-PyTroch-NCF BigDL-NCF

The training performance of NCF using the BigDL implementation is 1.6x faster
than the reference PyTorch implementation, as reported by MLPerf
MLPerf 0.5 training results URL: https://mlperf.org/training-results-0-5

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. SOCC 2019


https://mlperf.org/training-results-0-5

Training Scalability

—BigDL 0.3.0

Throughput of ImageNet Inception v1 training (w/ BigDL 0.3.0 and dual-socket Intel Broadwell 2.1 GHz);
the throughput scales almost linear up to 128 nodes (and continue to scale reasonably up to 256 nodes).

Source: Scalable Deep Learning with BigDL on the Urika-XC Software Suite
(https://www.cray.com/blog/scalable-deep-learning-bigdl-urika-xc-software-suite/)

S0OCC 2019


https://www.cray.com/blog/scalable-deep-learning-bigdl-urika-xc-software-suite/

Real-World Applications



Object Detection and Image Feature Extraction at
JD.com

EUCEEN  Problem with previous “connector

i approach” (similar to CaffeOnSpark)

* Very complex and error-pronein
managing large-scale distributed
systems

* Impedance mismatch
» Mismatch in the parallelism for data
processing and for model compute

DeepBit Model

S0OCC 2019



Object Detection and Image Feature Extraction at
JD.com

Boxes &
scores

Image feature extraction pipeline
throughput (img/s)

K40 (20 cards) Xeon (1200 logic cores)

DeepBit Model

Implement the entire data analysis and deep learning pipeline under a unified programming paradigm on
Spark

Greatly improves the efficiency of development and deployment

Efficiently scale out on Spark with superior performance (3.83x speed-up vs. GPU severs) as benchmarked by JD

https://software.intel.com/en-us/articles/building-large-scale-image-feature-extraction-with-bigdl-at-jdcom SOCC 2019



https://software.intel.com/en-us/articles/building-large-scale-image-feature-extraction-with-bigdl-at-jdcom

TECHNOLOGY

@bluedata‘@ cloudera

HHHHHHHHHHHHHHHHHHHHHHH

< @databricks
DEALEMC

77 GIGASPACES

ate with ¢

!Lightbend

Ou bole

And Many More
GLOUD SERVICE PROVIDERS END USERS
[ 4
i cdhi
® F3en

CHINA TELECOM

J\ Azure

(5 1BM Cloud @ide'cf
" U Pa
Jelefonica ~— KINGSOFT "o

http://software.intel.com/bigdl/build

*Other names and brands may be claimed as the property of others. NOt a fU“ “St SOCC 2019



Future Work

S0OCC 2019



Analytics Zoo: Unified Data Analytics + Al Platform
Distributed TensorFlow, Keras, PyTorch and BigDL on Apache Spark

Use case Recommendation DAQt(()ercr]c?ol)rl\ Text Classification  Text Matching
Image Object

Model Classififation Detejction sesjzee) f Usiserer § s

Feature Engineering image 3D image text Time series

High Level  LLiEANGDstaea T on Spark | [{Plsbited Keres wf atoered on Spark

Bkt | rensoriov Jf Keres  g0L J NLP Archiect [ Apache Flink

Library | oy JVLONNJ OpenViNO Jlintel” Optane™ DCPM J§f DL Boost (VNNI)_

Analytics Zoo tutorial: https://github.com/jason-dai/aaai2019
https://github.com/intel-analytics/analytics-zoo

SOCC 2019


https://github.com/intel-analytics/analytics-zoo

Al on ssarks

™

n H'H’f./ NALYTICS
T DLE 7®0

Distributed, High-Performance Analytics + Al Platform
Deep Learnmg Framework Distributed TensorFlow*, Keras?*,

for Apache Spark* PyTorch* and BigDL on Apache Spark*

https://github.com/intel-analytics/bigdl https://github.com/intel-analytics/analytics-zoo

Accelerating Data Analytics + Al Solutions At Scale

*Other names and brands may be claimed as the property of others. SOCC 2019


software.intel.com/bigdl
https://github.com/intel-analytics/analytics-zoo

Q&A

SOCC 2019



Appendix

S0OCC 2019



Unified Big Data Analytics Platform

Apache Hadoop & Spark Platform

N
N
N
\
\
\
- |
- \
- - - ‘
'
'
'
]
]
]

Data

Processing

& Analysis
Spark Core Giraph

: o ° YARN ZooKeeper

il & Co-ordination i

Wl Data

| ; Flume Kafka Storage HDFS Parquet Avro HBase
N Inpu

SOCC 2019



Chasm b/w Deep Learning and Big Data

Communities
The
] Chasm
Deep learning experts Average users (big data users, data scientists, analysts, etc.)

SOCC 2019



Apache Spark

Low Latency, Distributed Data Processing Framework

A Spark cluster consists of a single Worker i
driver node and multiple worker nodes Spark Task | !

| |

' - | [ Spark Task | |

* A Spark job contains many Spark tasks, i Slen P i
each working on a data partition | Spark Task | |

| SRALK M A SR

* Driver is responsible for scheduling and i 5 o" Worker i
dispatching the tasks to workers, which P w ] amgm.a Spark Task | !
runs the actual Spark tasks TR ok i

|

Spark Task i

https://spark.apache.org

SOCC 2019


https://spark.apache.org/

Training Scalability

Overheads of parameter synchronization (as a fraction of average model
computation time) of ImageNet Inception-v1 training in BigDL

Source: Scalable Deep Learning with BigDL on the Urika-XC Software Suite
(https://www.cray.com/blog/scalable-deep-learning-bigdl-urika-xc-software-suite/)

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. SOCC 2019


https://www.cray.com/blog/scalable-deep-learning-bigdl-urika-xc-software-suite/

Reducing Scheduling Overheads Using
Drizzle

Scaling to even larger (>500) workers
* Iterative model training
« Same operations run repeatedly —BigDL w/o Drizzle
* Drizzle BigDL w/ Drizzle
+ A low latency execution engine for Spark

* Group scheduling for multiple iterations
of computations at once

Source: Accelerating Deep Learning Training with BigDL and Drizzle on Apache Spark, Shivaram Venkataraman, Ding Ding, and Sergey Ermolin.
(https://rise.cs.berkeley.edu/blog/accelerating-deep-learning-training-with-bigdl-and-drizzle-on-apache-spark/) SOCC 2019



https://rise.cs.berkeley.edu/blog/accelerating-deep-learning-training-with-bigdl-and-drizzle-on-apache-spark/

Precipitation nowcasting using sequence-to-
sequence models in Cray

encoder decoder

Sequence to sequence model

* Running data processing on a Spark cluster, and deep learning training on GPU cluster not only brings
high data movement overheads, but hurts the development productivity due to the fragmented workflow

* Using a single unified data analysis and deep learning pipeline on Spark and BigDL improves the
efficiency of development and deployment SOCC 2019



Real-time streaming speech classification in

Spark Streaming Job

WEB FRONTEND
Speech Classification
Algorithms in BigDL

The end-to-end workflow of real-time streaming speech classification on
Kafka, Spark Streaming and BigDL in GigaSpaces.

» BigDL allows neural network models to be directly applied in standard distributed streaming architecture
for Big Data (using Apache Kafka and Spark Streaming), and efficiently scales out to a large number of

nodes in a transparent fashion.
https://www.gigaspaces.com/blog/gigaspaces-to-demo-with-intel-at-strata-data-conference-and-microsoft-

ignite/

SOCC 2019


https://www.gigaspaces.com/blog/gigaspaces-to-demo-with-intel-at-strata-data-conference-and-microsoft-ignite/




lEGAI. DISCLAIMERS

Intel technologies’ features and benefits depend on system configuration and may require enabled
hardware, software or service activation. Learn more at intel.com, or from the OEM or retailer.

* No computer system can be absolutely secure.

» Tests document performance of components on a particular test, in specific systems. Differences in
hardware, software, or configuration will affect actual performance. Consult other sources of
information to evaluate performance as you consider your purchase. For more complete
information about performance and benchmark results, visit http://www.intel.com/performance.

Intel, the Intel logo, Xeon, Xeon phi, Lake Crest, etc. are trademarks of Intel Corporation in the U.S.
and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2019 Intel Corporation

SOCC 2019


http://www.intel.com/performance

