
Hongzhi Chen, Changji Li, Juncheng Fang, Chenghuan
Huang, James Cheng, Jian Zhang, Yifan Hou, Xiao Yan

Grasper
A High Performance Distributed System
for OLAP on Property Graphs

Outlines

2

Background

Motivation

System Design

Evaluation

Graph Data is Everywhere

3

 Social Networks
 Products/Friends recommendation

 User actions capture

 Semantic Webs
 Real-Time hot-topics tracking

 Semantic analysis/prediction

 Biological Networks
 DNA sequencing

 Diseases diagnosis

 Financial networks
 Market forecasts

 Stock analysis

Graph Data Analytics

4

Offline: Batch Processing for Graph Data Computation

 PageRank

 SSSP

 Connected Components

 Triangle Counting

 Graph Matching

 …

Graph Data Analytics

5

Online: Graph Querying for Real-time Analytics

Graph Data Analytics

6

Online: Graph Querying for Real-time Analytics

Performance Objectives:

• Low query latency

• High throughput

• Good scalability

Challenging to achieve these objectives on large graphs:

• Graph has flexible structure, no fixed schema

- hard to store and index for querying

• Graph has diverse query complexity

- significantly different on workloads

• One query may involve various operators with various access patterns

- e.g., filter, traversal, aggregator)

• Graph OLAP has high costs on Net and CPU

- complex processing logics with large portion of data

Graph Model

7

Property Graph

Nodes: represent entities (or objects) in the graph

• Properties: a set of attributes (key-value pairs)

• Labels: roles in a domain

Edges: provide directed, semantically connection between two entities.

• Also have properties (costs, distances, ratings, time intervals) and labels.

Figure 1. An example of Property Graph.

Query Language

8

Gremlin

A procedural query language supported by Apache TinkerPop, which allows users
to express queries as a set of query steps on a property graph.

Outlines

9

Background

Motivation

System Design

Evaluation

Performance of Some Existing Systems

10

Figure 2. The query latency breakdown of IC4 in LDBC benchmark.

Performance of Some Existing Systems

11

Figure 3. The CPU and network utilization for a mixed workload formed by {IS1-IS4}
in LDBC benchmark.

Performance of Some Existing Systems

12

The limitations of existing graph databases for online query.

High latency for complex analytical query (e.g., IC4 in LDBC)

 Time spent on the query steps varies significantly.

 e.g., hasLabel(), in() took up most of the query processing time

 Due to the diverse execution logics and data access patterns of different

query steps.

 hasLabel(), a filter operator on nodes by labels

 in(), a traversal operator on adjacent vertices

Low utilization of CPU and network

 Non-native graph storage (e.g., NoSQL or RDBMS) is unfriendly for graph

querying

• e.g., searching neighborhoods starting from vertices, path-based

queries, expanding a clique, etc.

 Inefficient query execution model, one-query-one-thread mechanism

Motivation

13

Design Goals

 To propose an efficient query execution model for OLAP on graphs

 to achieve high utilization on CPU and network

 To implement parallel processing on single complex query, while high

concurrency for processing multiple queries

 to address the diversity of graph query operators

 To avoid using external databases, integrate data store with execution

engine tightly to eliminate unnecessary overheads

 Data storage should be native for graph representation

 By leveraging RDMA to reduce the cost of network communication

 Accordingly, the designs of data store and system components should be

RDMA-friendly

Outlines

14

Background

Motivation

System Design

Benchmark

Evaluation

System Overview

15

Grasper: An RDMA-enabled distributed OLAP system

on property graphs

 Native graph store

 Query-friendly execution model (i.e. Expert Model)

 RDMA-based concurrent query processing

 Performance v.s. state-of-the-art (Titan,JanusGraph,

OrientDB, Neo4J, TigerGraph)

 Better CPU & Net Utilization

 Orders of magnitude speed-up

 Higher Throughput

System Design

16

Data Store, divide the in-memory space into two parts

 Normal Memory, stores graph topology

 RDMA Memory, stores properties on nodes/edges as KVS

Figure 4. Data store in Grasper.

System Design

17

Data Store

 Index-free adjacency lists to support graph traversal

 RDMA-enabled KVS to achieve low-cost remote access to labels

and property values.

 A graph query can be represented as:

graph traversal + filtering on properties + other control constraints

[name: “Jack”, age: 27, birthday:
“xxx”, city: HK, Company: “xxx”, …]

System Design

18

Memory Layout

RDMA Verbs

 KVS.get()  one-sided RDMA read

 Cross-node graph traversal  one-sided RDMA write

 Query logic constraints, e.g., where(), and(), agg(), etc.

Figure 6. RDMA message dispatching in Grasper.

Figure 5. Memory layout on a Grasper node.

System Design

19

Query Plan Construction

Flow Type, to describe the execution flow of each query step

 to enable parallel query processing in a distributed setting

(1) Sequential: query logic is independent, e.g., in(), out(), has()

(2) Barrier: need sync before moving forward, e.g. count(), max()

(3) Branch: can be splitted into subqueries, e.g., or(), and(), union()

(1) Process in parallel (2) collect all, then go next
(3) split to sub-queries but

needs sync at the endpoint

System Design

20

Query Plan Construction

Query Optimizer, to parse a query string into a logical execution plan

in the form of a DAG.

System Design

21

Execution Engine – Expert Model

Design Philosophy, a top-down query-specifc mechanism to address

the characteristics of graph OLAP

(1) adaptive parallelism control at step-level inside each query;

(2) tailored optimizations for various query steps according to their

specific query logic and data access pattern;

(3) locality-aware thread binding and load balancing

Expert: a physical query operator in Grasper that expertly handles

the processing of one category of steps

 to allow fine-grained specialization for querying

 each expert maintains its own

 opt structures (e.g., indexes, cache) if any

 execute() function

 routing rules for out-going msgs

System Design

22

Execution Engine – Expert Model

The Mechanism of Experts

1) Each node launches only one expert instance for one type
--- Consequently, all query data belonging to one category of query steps

will be processed by its unique expert only, with shared optimizations,

i.e., cache, index, etc.

2) Each expert can employ multi-threads to dynamically concurrently

process the query steps with above shared optimizations

Figure 7. (a) adaptive parallelism at step-level; (b) an expert example.

Case:

2 machines

in cluster

System Design

23

Execution Engine – Expert Model

Expert pool: formed by 22 experts currently to represent the query

steps in Gremlin language semantics, driven by a thread pool.

Table 1. The expert pool in Grasper.

System Design

24

Execution Engine – Expert Model

Locality-Aware Thread Binding and Load Balancing

1) To reduce the overhead brought from thread switching

2) To avoid the negative side-effects due to NUMA architecture

3) To achieve thread-level load balancing

Figure 8. Core bind and load balancing in Grasper.

CPU CPU CPU CPU CPU

Mem

CPU

Mem Mem Mem Mem Mem

Thread Pool

Expert Pool

… … …
Logical Partition
on Thread Pool

Msg Stealing

System Design

25

Execution Engine – Expert Model

Figure 9. The work flow of Expert Model to
process concurrent queries in Grasper.

Work Flow:

when a query engine is

launched, its expert

pool will be initialized

and all expert instances

will be constructed and

kept alive until the

engine shuts down.

Outlines

26

Background

Motivation

System Design

Evaluation

Benchmark

27

LDBC-Social Network Benchmark
 Interactive Complex IC1 - IC4

 Interactive Short IS1 - IS4

Self-Proposed

 8 query templates for better representation of real-world workloads

Table 2. The 8 queries in our benchmark.

Evaluation

28

Setting

 Using 10 machines, each with two 8-core Intel Xeon E5-2620v4 2.1GHz

processors and 128GB of memory.

 For fair comparison, we always used 24 computing threads in each machine for

all systems we compared with.

Compared Systems

 Titan [1.1.0], JanusGraph [0.3.0], Neo4j [3.5.1], OrientDB [3.0.6] and

TigerGraph Developer Edition

 Try our best to tune their confguration (i.e., system parameters) to the setting

that gives their best performance.

Datasets

Table 3. Dataset statistics.

Evaluation

29

Latency Breakdown & CPU / Net Utilization

 Grasper needs only about 60ms to process the bottleneck steps (i.e,

hasLabel(), in()).

 The CPU and network utilization have been significantly improved to
around 95% and 380+ MB/s respectively.

Figure 10. (a) The query latency breakdown of IC4 on LDBC by Grasper;
(b) CPU and network utilization of Grasper for the mixed workload {IS1-IS4}.

Evaluation

30

Query Latency

Table 5. Query latency (in msec) of single-machine systems on one machine.

Table 4. Query latency (in msec) of distributed systems on 10 machines.

Evaluation

31

Throughput

Figure 11. (a) Throughput on LDBC for {IS1-IS4}; (b) CDFs of Grasper’s query
latency for {IS1-IS4} (using 10 machines).

Figure 12. (a) Throughput on AMiner for {Q1, Q2, Q6}; (b) CDFs of Grasper’s query
latency for {Q1, Q2, Q6} (using 10 machines)

Evaluation

32

Effects of System Designs & Opts

 The performance definitely not only comes from RDMA, but also other

system optimizations and Expert Model.

Table 7. Query latency (in msec) of [Grasper-X] (using 10 machines).

Table 6. Query latency (in msec) of Grasper w/ and w/o adaptive parallism control.

Conclusion

33

Grasper

1. A high performance distributed OLAP system over graphs

2. RDMA-enable system design, tightly integrate the data store

layer with the execution layer to achieve better performance.

3. We propose a novel Expert Model, which enables tailored

optimizations on query steps as well as adaptive parallelism

control and dynamic load balancing on runtime.

Thank You

Grasper
Hongzhi Chen, et al.

Email: hzchen@cse.cuhk.edu.hk

An open-source project,

https://github.com/yaobaiwei/Grasper

Husky Data Lab, CSE

The Chinese University of Hong Kong

34

mailto:hzchen@cse.cuhk.edu.hk
https://github.com/yaobaiwei/Grasper

