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= Social Networks
> Products/Friends recommendation

» User actions capture

= Semantic Webs
» Real-Time hot-topics tracking
» Semantic analysis/prediction

= Biological Networks
» DNA sequencing
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I Graph Data Analytics

Offline: Batch Processing for Graph Data Computation

= PageRank

= SSSP

= Connected Components
Triangle Counting
Graph Matching

Graph processing frameworks / engines
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Graph Data Analytics

Online: Graph Querying for Real-time Analytics
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I Graph Data Analytics

Online: Graph Querying for Real-time Analytics

Performance Objectives:
» Low query latency
» High throughput
* Good scalability

Challenging to achieve these objectives on large graphs:

« Graph has flexible structure, no fixed schema
- hard to store and index for querying
« Graph has diverse query complexity
- significantly different on workloads
« One query may involve various operators with various access patterns
- e.g., filter, traversal, aggregator)
« Graph OLAP has high costs on Net and CPU
- complex processing logics with large portion of data



I Graph Model

Property Graph
Nodes: represent entities (or objects) in the graph
* Properties: a set of attributes (key-value pairs)
« Labels: roles in a domain
Edges: provide directed, semantically connection between two entities.
» Also have properties (costs, distances, ratings, time intervals) and labels.

name:josh

created 14

Figure 1. An example of Property Graph.



I Query Language

Gremlin

A procedural query language supported by Apache TinkerPop, which allows users
to express queries as a set of query steps on a property graph.

// What are the names of Gremlin's friends' friends?
g.V().has("name","gremlin").

out("knows").out("knows").values("name")

// What is the distribution of job titles amongst Gremlin's collaborators?
g.V().has("name","gremlin").as("a").

out("created").in("created").

where(neq("a")).

groupCount().by("title")

A

)d\' Graph Graph

Databases Processors
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I Performance of Some Existing Systems
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Figure 2. The query latency breakdown of IC4 in LDBC benchmark.
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I Performance of Some Existing Systems
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Figure 3. The CPU and network utilization for a mixed workload formed by {IS1-154}
in LDBC benchmark.



I Performance of Some Existing Systems

The limitations of existing graph databases for online query.

High latency for complex analytical query (e.g., IC4 in LDBC)
» Time spent on the query steps varies significantly.
= e.q., hasLabel(), in() took up most of the query processing time

> Due to the diverse execution logics and data access patterns of different
query steps.

= hasLabel(), a filter operator on nodes by labels
= in(), a traversal operator on adjacent vertices

Low utilization of CPU and network

» Non-native graph storage (e.g., NoSQL or RDBMS) is unfriendly for graph
querying
* e.g., searching neighborhoods starting from vertices, path-based
queries, expanding a clique, etc.

> Inefficient query execution model, one-query-one-thread mechanism

12



| Motivation

Design Goals

> To propose an efficient query execution model for OLAP on graphs
= to achieve high utilization on CPU and network

» To implement parallel processing on single complex query, while high
concurrency for processing multiple queries

= to address the diversity of graph query operators

> To avoid using external databases, integrate data store with execution
engine tightly to eliminate unnecessary overheads

= Data storage should be native for graph representation

> By leveraging RDMA to reduce the cost of network communication

= Accordingly, the designs of data store and system components should be
RDMA-friendly

13
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I System Overview

Grasper: An RDMA-enabled distributed OLAP system
on property graphs

» Native graph store

» Query-friendly execution model (i.e. Expert Model)
» RDMA-based concurrent query processing
>

Performance v.s. state-of-the-art (Titan,JanusGraph,
OrientDB, Neo4J, TigerGraph)

» Better CPU & Net Utilization
» Orders of magnitude speed-up
» Higher Throughput



I System Design

Data Store, divide the in-memory space into two parts
» Normal Memory, stores graph topology
> RDMA Memory, stores properties on nodes/edges as KVS

- » -<£ -
| € 1

! Normal Mem ! RDMA Mem !
'\nx_label map' vix_ptymap |e_labelmap | | e_pty map
String-ID| | Person 1 name 1 knows 1] | weight 1
Map software 2 age 2 created 2
lang 3
Graph Topology Info Property KV Store

in-adj-list }—b[ out-adj-list }—) IDs of Property Keys Iabel
234 —f 1.2 GO [L1marko’, 2201
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Region @ 1 null 1, 2 @ | [ 1:"vadas", 2:27 ] |
@—b@ > null » 1,3 @ [ [ 1:lop", 3:"java" ] |
(eig—>IDs of Property Keys (label
cage | (R—{ 1] D
Region
)

Figure 4. Data store in Grasper.
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I System Design

Data Store
> Index-free adjacency lists to support graph traversal

> RDMA-enabled KVS to achieve low-cost remote access to labels
and property values.

» A graph query can be represented as:
graph traversal + filtering on properties + other control constraints

g.V().as('a').out('created').in('created').as('b"').
select('a’','b").by('name"’).where('a’,neq('b"))

4 N N )

[name: “Jack”, age: 27, birthday: o=
“xxx”, city: HK, Company: “xxx”, ... -
/

17



I System Design

Memory Layout

Normal Mem

RDMA Mem
Data Store |Index Buff| Meta Heap Data Store Meta Heap | Send Buffs Recv Buffs
# threads | # (threads x nodes)
graph index meta data . . meta data | | 1 10 1
topology maps /tmp buff V-KVS | EKVS /tmp buft [ ] -

[ ] [ 1 ]

Figure 5. Memory layout on a Grasper node.
RDMA Verbs
> KVS.get() > one-sided RDMA read
» Cross-node graph traversal = one-sided RDMA write
» Query logic constraints, e.g., where(), and(), agg(), etc.

SR msg( | sync I
0 N S (1 )
tl tl R t]. - -
2 N 2 N\ 2— >: . B Pl
t3 \:] t3 \‘: 3 — - t3 \5—
(1) split (2) transfer (3) merge (4) spawn

Figure 6. RDMA message dispatching in Grasper.
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I System Design

Query Plan Construction
Flow Type, to describe the execution flow of each query step
> to enable parallel query processing in a distributed setting

(1) Sequential: query logic is independent, e.g., in(), out(), has()
(2) Barrier: need sync before moving forward, e.g. count(), max()
(3) Branch: can be splitted into subqueries, e.g., or(), and(), union()

].___
].___
].___

| |
[j [j
\\ /, D\ D
oo .I I
2R 2 ¥ v
(1) Process in parallel (2) collect all, then go next (3) split to sub-queries but

needs sync at the endpoint
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I System Design

Query Plan Construction

Query Optimizer, to parse a query string into a logical execution plan
in the form of a DAG.

Query: g.V().hasKey("lang").and( in().count().is(2),
out("knows").has("name”, "Tom")

.has("age”, 20
Step-objs ) (fag )

® ® ®
TV lhasKey("lang").has("age",20)| |—>{| and(spawn)| }—‘

L @ ® ®
[ in() [—>{] count() [—>{|is(2) ®

@ |and(merge)||
out("knows") || has("name","Tom")

DAG of a Query




I System Design

Execution Engine - Expert Model
Design Philosophy, a top-down query-specifc mechanism to address
the characteristics of graph OLAP
(1) adaptive parallelism control at step-level inside each query;

(2) tailored optimizations for various query steps according to their
specific query logic and data access pattern;

(3) locality-aware thread binding and load balancing

Expert: a physical query operator in Grasper that expertly handles
the processing of one category of steps

> to allow fine-grained specialization for querying

» each expert maintains its own

» opt structures (e.g., indexes, cache) if any
» execute() function
» routing rules for out-going msgs

21



I System Design

Execution Engine - Expert Model

The Mechanism of Experts

1) Each node launches only one expert instance for one type
--- Consequently, all query data belonging to one category of query steps

will be processed by its unique expert only, with shared optimizations,
i.e., cache, index, etc.

2) Each expert can employ multi-threads to dynamically concurrently
process the query steps with above shared optimizations

11 110 110

Case:
2 machines (y)
in cluster

(b) Step 2: Expert: Filter Step 4: Expert: Traversal
# threads (local): 2, # threads (local): 1,
execute() --> hasKey, execute() -->in,

Cache: LRU, Cache: FIFO,
Size: 1000, Size : 500,
Index: key->[...], Route: Static
Route: Round Robin

Figure 7. (a) adaptive parallelism at step-level; (b) an expert example.
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I System Design

Execution Engine - Expert Model

Expert pool: formed by 22 experts currently to represent the query
steps in Gremlin language semantics, driven by a thread pool.

Expert Query Steps

Init 2.V(), 2.E0

End N/A [to aggregate the final results]

Traversal in, out, both, inE, outE, bothE, inV, outV, bothV
Filter has, hasNot, hasKey, hasValue

Range range, limit, skip

Order order

Group group, groupCount

Math min, max, mean,

BranchFilter and, or, not

Table 1. The expert pool in Grasper.



I System Design

Execution Engine - Expert Model

Locality-Aware Thread Binding and Load Balancing

1) To reduce the overhead brought from thread switching
2) To avoid the negative side-effects due to NUMA architecture
3) To achieve thread-level load balancing

Expert Pool
- . | | Logical Partition
: ” # --------- ” ” :- on Thread Pool
Thread Pool

=)
a a % a @ @ o

Figure 8. Core bind and load balancing in Grasper.
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I System Design

Execution Engine - Expert Model

Work Flow:

when a query engine is
launched, its expert
pool will be initialized
and all expert instances
will be constructed and
kept alive until the
engine shuts down.

Q171: g.V().has(...).out().values(...) Q2: g.V().limits(...).in()...

e

Engine 1
RDMA FtechuA
Gpen o o | | T 1
Pool L JCJL_JL_1
N I NN N N I |_—2
D T A
| A+ | [ [ IN
expert dispatcher I
¥ v y
thread 1: | thread 2: | thread 3: : thread-pool
Qil.out | Qi.out Q2in |***: w/core bind
I D [ L
___________________ RDMA Mailbox ...
U 1 s
Y
RDMA/wW RDMA/wW .
Engine 2 Engine 3
RDMA. RecvBufs 4 RDMA RecvBufs
L T T J|~—7—M_ |
L 1 [ | . 1 1 |

Figure 9. The work flow of Expert Model to
process concurrent queries in Grasper.
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I Benchmark

LDBC-Social Network Benchmark

> Interactive Complex IC1 - IC4
> Interactive Short IS1 - IS4

Self-Proposed

»> 8 query templates for better representation of real-world workloads

Ql g.V().has([filter]).properties([property])

Q2 g.V().hasKey([filter1]).hasLabel([label]).has([filter2])

Q3 g.V().has([filter]).in([label]).values([key]).max()

Q4 g.E().has([filter]]).outV().dedup().has([filter2]).count()
g.E().has([filterI]).not(outV([label]).has([filter2]))

Q5 .groupCount([key])
g.V().has([filter]).and(

6 out([labell]).values([keyl]).min().is([predicatel]),

Q in([label2]).count().is([predicate2])
).values([key2])
g.V().has([filter!]).as(’a’).union(

out([labell]),

Q7 out([label2]).out([label3])
).in([label4]).where(neq(’a’)).has([filter2])
.order([property]).limit([number])

g g.V().has([filterl]).aggregate(’a’).in([labell]).out([label2]).

Q Jhas([filter2]).where(without(’a’))

Table 2. The 8 queries in our benchmark.

27



I Evaluation

Setting
s Using 10 machines, each with two 8-core Intel Xeon E5-2620v4 2.1GHz
processors and 128GB of memory.

» For fair comparison, we always used 24 computing threads in each machine for
all systems we compared with.

>

L)

Compared Systems

s Titan [1.1.0], JanusGraph [0.3.0], Neo4j [3.5.1], OrientDB [3.0.6] and
TigerGraph Developer Edition

s Try our best to tune their confguration (i.e., system parameters) to the setting
that gives their best performance.

Datasets
Dataset V] IE| [VP| [EP|
LDBC 59,308,744 357,617,104 321,281,654 101,529,501
AMiner 68,575,021 285,667,220 291,161,548 120,381,452
Twitter 52,579,682 1,963,262,821 320,732,961 577,955,736

Table 3. Dataset statistics.




I Evaluation

Latency Breakdown & CPU / Net Utilization

> Grasper needs only about 60ms to process the bottleneck steps (i.e,
hasLabel(), in()).

» The CPU and network utilization have been significantly improved to

around 95% and 380+ MB/s respectively.

100 —— CPU-Grasper - - - Net-Grasper o
. 100 | 512 3
o has (1) = [ =
80 1.15 78.69 . . E{ )
1.38 both < MR . Ul Al P nh 5._:
= S PV A A
2 60 W hasLabel (1) B ; ! ! S
= W has 2) S enll ! rn S
© = 50 256
= out = i w
. -+ | D
5w : | S
hasLabel (2) = 25 128 —
20 B has (3) % ; =
M not I B
04— o; 0 ‘ '
N 395 | M groupCount 0 20 40 60 80 100 120 140 160 180 =
Grasper Running Time(s)

Figure 10. (a) The query latency breakdown of IC4 on LDBC by Grasper;
(b) CPU and network utilization of Grasper for the mixed workload {IS1-154}.



I Evaluation

Query Latency

LDBC IC1 IC2 IC3 IC4 IS1 IS2 IS3 IS4
Grasper 271 16.7 388 77.3 0.30 2.19 0091 0.32
Titan 66985 13585 58E5 11947 0.71 259 2.88 1.32
J.G. [ 56206 9223 4.5E5 22420 } 0.83 145 299 1.17
AMiner Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Grasper 0.17 0.42 17.3 45.2 104 28.8 2.32 441
Titan 1.07 124 32341 2.1E5 43809 234 911 84.08
J.G. 1.34 8.70 27466 2.4E5 39155 276 561 84.71
Table 4. Query latency (in msec) of distributed systems on 10 machines.
LDBC IC1 IC2 IC3 IC4 IS1 IS2 IS3 IS4
Grasper [ 1935 75.1 2550 223 \ 0.48 251 138 0.13
Neo4) 1448 372 15042 293 20.7 77.6 16.3 21.7
OrientDB | 32869 2140 20721 2582 0.91 25.1 3.46 1.47
T.G.(install | 46517 40739 44048 43685| 37745 41629 38799 37708
+run) 4553 +182 +117  +30.1V +8.03 +11.1 +9.39 +7.66

Table 5. Query latency (in msec) of single-machine systems on one machine.
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I Evaluation
Throughput
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Figure 11. (a) Throughput on LDBC for {IS1-154}; (b) CDFs of Grasper’s query
latency for {IS1-1S4} (using 10 machines).
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Figure 12. (a) Throughput on AMiner for {Q1, Q2, Q6}; (b) CDFs of Grasper’s query
latency for {Q1, Q2, Q6} (using 10 machines)



I Evaluation

Effects of System Designs & Opts

» The performance definitely not only comes from RDMA, but also other
system optimizations and Expert Model.

LDBC ICT 1C2 IC3 IC4 ISt Is2 IS3 IS4
Grasper 271 167 388 773 030 219 091 032
wio APC 469 248 666 131 051 363 143 0.54
AMiner Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
Grasper 0.17 042 173 452 104 288 232 44l
wioAPC 020 062 237 596 111 354 450 6.15

Table 6. Query latency (in msec) of Grasper w/ and w/o adaptive parallism control.

LDBC IC1T _ IC2 IC3 IC4 IS1_ IS2 IS3 IS4
Grasper 271 167 388 773 030 219 091 032
_RDMA 1349 17.97 1253 260 1.04 257 206 126
-Q.Opts 374 1939 558 8126 031 238 093 032

_Steal 488 2468 671 127 057 325 131 054
AMiner Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8
Grasper _ 0.17 042 173 452 104 288 232 441
_RDMA 054  1.18 21.54 7047 222 3069 909 6.3
-QOpts  0.17 4254 2284 417 131 3549 289 434

-Steal 023 061 2091 57.62 111 3344 401 6.07

Table 7. Query latency (in msec) of [Grasper-X] (using 10 machines).
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I Conclusion

Grasper

1. Ahigh performance distributed OLAP system over graphs

2. RDMA-enable system design, tightly integrate the data store
layer with the execution layer to achieve better performance.

3. We propose a novel Expert Model, which enables tailored
optimizations on query steps as well as adaptive parallelism
control and dynamic load balancing on runtime.



I Thank You

Grasper

Hongzhi Chen, et al.
Email: hzchen@cse.cuhk.edu. hk

An open-source project,
https://github.com/yaobaiwei/ Grasper

Husky Data Lab, CSE
The Chinese University of Hong Kong
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