
2019

TagSniff
Simplified Data Debugging 

for Dataflow Jobs

Bertty Contreras Jorge Quiané
Zoi Kaoudi Saravanan Thirumuruganathan

Powered by:

Many Exciting Big Data Areas!

Many Exciting Big Data Areas!
De
bu
gg
ing

… and how is big data debugging?

[Reversible debugging software “quantify the time and cost saved using reversible debuggers”. CiteSeerX, 2013]

[The Debugging Mindset. ACM Queue, 2017.]

… and how is big data debugging?

Software development time
50%

debugging
50%

implementation

[Reversible debugging software “quantify the time and cost saved using reversible debuggers”. CiteSeerX, 2013]

[The Debugging Mindset. ACM Queue, 2017.]

… and how is big data debugging?

Software development time
50%

debugging
50%

implementation

long way to
data insights

[Reversible debugging software “quantify the time and cost saved using reversible debuggers”. CiteSeerX, 2013]

[The Debugging Mindset. ACM Queue, 2017.]

… and how is big data debugging?

wastage of
computing resources

Software development time
50%

debugging
50%

implementation

long way to
data insights

[Reversible debugging software “quantify the time and cost saved using reversible debuggers”. CiteSeerX, 2013]

[The Debugging Mindset. ACM Queue, 2017.]

… and how is big data debugging?

$312b/year

wastage of
computing resources

Approach 1: Code Debugging

• Great for small data and single machine

Approach 1: Code Debugging

• Great for small data and single machine

• Cannot examine
• line per line

• tuple per tuple

• machine per machine

Approach 2: Sample + Code Debugging

small
sample

data

Approach 2: Sample + Code Debugging

small
sample

data

• Hard to spot the error!

Approach 2: Sample + Code Debugging

small
sample

data Data

• Hard to spot the error!

Data Debugging
Identifying and removing errors stemming
from the interplay between code and data

code

data

Approach 3: Sample + Debugging Tips

code

sample

data

instrumentationrepeat

Approach 3: Sample + Debugging Tips

code

sample

data

instrumentationrepeat

• Hard to spot the error

• Time-consuming task

Approach 3: Sample + Debugging Tips

code

sample

data

instrumentationrepeat

• Hard to spot the error

• Time-consuming task

• Doomed to fail!

TagSni�: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

Table 1: Desired debugging tasks.

Debugging mode Task Description

O
nl
in
e

crash culprit When a crash is triggered, return the tuple, the operator and the node that caused
it.

pause
Allow the user to pause execution (virtually or truly) when a certain (user-de�ned)
condition is met and step through, either to go the next tuple or to go to the next
operator for the same tuple.

alert Alert the user when a certain (user-de�ned) condition is met. Conditions can be on
a single tuple, on a set of tuples or on a latency metric.

Po
st
-h
oc

replay Replay the execution of the entire or part of the main data�ow job.

trace Forward or backward trace of tuples: given a tuple t , �nd all tuples that either stem
from t (forward) or led to t (backward).

pro�le Pro�le any kind of metric, such as data distribution, latency distribution, runtime
overhead, and memory usage.

assert Evaluate if the input or output tuples satisfy certain assertions, which is also useful
for comparison with ground truth input/output tuples.

mode should: (i) allow a user to inspect intermediate results with
or without pausing the data�ow execution, and (ii) provide a set
of primitives so that a user can select intermediate data relevant
for debugging programmatically. Very few systems [12] provide
support for online big data debugging.
Post-hocmode. This is themost commonmode for big data debug-
ging. Users instrument the main data�ow job to dump information
into a log. One can then write another job (e. g., in Spark) to ana-
lyze the log and identify the issue. While common, this approach
of using log �les is often not su�cient. This is because a logical
view [12] is not available in the logs, such as which input records
produce a given intermediate result or the eventual output (i. e., lin-
eage). This information is often invaluable for e�ective debugging.
Ideally, the post-hoc mode should allow a user to (i) get the logical
view of the job without any e�ort and (ii) provide an easy way to
express common post-hoc debugging scenarios. Very few systems
provide extensive support for post-hoc debugging. Most of them
support speci�c scenarios, such as lineage [16] or task replay [10],
and cannot be easily generalized to others.

2.3 Desiderata
Commondebugging tasks. Based on various user studies [18, 23]
and prior work [10–12, 20], we identify the most popular debugging
tasks in Table 1 and grouped them in seven major categories. Very
few systems can support all of them. Typically, the users roll their
sleeves and implement task-speci�c variants of these common tasks
at a signi�cant development cost.
Desiderata for primitives. The requirements for primitives in-
clude (i) concise enough to handle the scenarios from Table 1, (ii) be
�exible enough to handle customized debugging scenarios, (iii) pro-
vide support for both monitoring and debugging.
Desiderata for a debugging system. To be an e�ective tool for
big data debugging, it must (i) provide holistic support for the
debugging primitives, (ii) handle common debugging scenarios
with no changes to the main data�ow job, (iii) allow users to add
custom functionality for identifying tuples of interest, (iv) have
detailed granularity at di�erent levels (machine, dataset, and tuple

Table 2: An example of tuple tags.

Tag Description
crash Caused the data�ow to fail
debug Requires online debugging
display Needs to be displayed to the user
log Has to be stored in a log

pause Requires the data�ow execution to pause
trace Needs to be tracked through the execution
skip Has to skip the remaining transformations

level), (v) have very low overhead to the main data�ow job, and
(vi) be generic to common big data processing systems without
modifying them.

3 THE TAGSNIFF MODEL
We introduce the tag-and-sni� debugging abstraction, TagSni� for
short. TagSni� provides the data�ow instrumentation foundations
for supporting most online and post-hoc debugging tasks easily
and e�ectively. It is composed of two primitives, tag and sni�, that
operate on the debug tuple. A unique characteristic of these primi-
tives is that users can easily add custom debugging functionality
via user de�ned functions (UDF). In the following, we call TagSni�
system any system that implements this abstract debugging model.

Example 1 (Running example: Top100Words). We consider the task
of retrieving the top-100 most frequent words. The following listing
provides the (slightly simpli�ed) Spark code:

1 val tw = textFile.flatMap(l => l.split(� �))
2 val wc = tw.map(word => (word, 1))
3 val wct = wc.reduceByKey(_ + _)
4 val top100 = wct.top(100)

Listing 1: Top-100 frequent words (Top100Words).

Need for Data Debugging Systems

[Inspector Gadget: A Framework for Custom Monitoring and Debugging of Distributed Dataflows. PVLDB, 2011]

[An empirical study on quality issues of production big data platform. ICSE, 2015]

TagSni�: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

Table 1: Desired debugging tasks.

Debugging mode Task Description

O
nl
in
e

crash culprit When a crash is triggered, return the tuple, the operator and the node that caused
it.

pause
Allow the user to pause execution (virtually or truly) when a certain (user-de�ned)
condition is met and step through, either to go the next tuple or to go to the next
operator for the same tuple.

alert Alert the user when a certain (user-de�ned) condition is met. Conditions can be on
a single tuple, on a set of tuples or on a latency metric.

Po
st
-h
oc

replay Replay the execution of the entire or part of the main data�ow job.

trace Forward or backward trace of tuples: given a tuple t , �nd all tuples that either stem
from t (forward) or led to t (backward).

pro�le Pro�le any kind of metric, such as data distribution, latency distribution, runtime
overhead, and memory usage.

assert Evaluate if the input or output tuples satisfy certain assertions, which is also useful
for comparison with ground truth input/output tuples.

mode should: (i) allow a user to inspect intermediate results with
or without pausing the data�ow execution, and (ii) provide a set
of primitives so that a user can select intermediate data relevant
for debugging programmatically. Very few systems [12] provide
support for online big data debugging.
Post-hocmode. This is themost commonmode for big data debug-
ging. Users instrument the main data�ow job to dump information
into a log. One can then write another job (e. g., in Spark) to ana-
lyze the log and identify the issue. While common, this approach
of using log �les is often not su�cient. This is because a logical
view [12] is not available in the logs, such as which input records
produce a given intermediate result or the eventual output (i. e., lin-
eage). This information is often invaluable for e�ective debugging.
Ideally, the post-hoc mode should allow a user to (i) get the logical
view of the job without any e�ort and (ii) provide an easy way to
express common post-hoc debugging scenarios. Very few systems
provide extensive support for post-hoc debugging. Most of them
support speci�c scenarios, such as lineage [16] or task replay [10],
and cannot be easily generalized to others.

2.3 Desiderata
Commondebugging tasks. Based on various user studies [18, 23]
and prior work [10–12, 20], we identify the most popular debugging
tasks in Table 1 and grouped them in seven major categories. Very
few systems can support all of them. Typically, the users roll their
sleeves and implement task-speci�c variants of these common tasks
at a signi�cant development cost.
Desiderata for primitives. The requirements for primitives in-
clude (i) concise enough to handle the scenarios from Table 1, (ii) be
�exible enough to handle customized debugging scenarios, (iii) pro-
vide support for both monitoring and debugging.
Desiderata for a debugging system. To be an e�ective tool for
big data debugging, it must (i) provide holistic support for the
debugging primitives, (ii) handle common debugging scenarios
with no changes to the main data�ow job, (iii) allow users to add
custom functionality for identifying tuples of interest, (iv) have
detailed granularity at di�erent levels (machine, dataset, and tuple

Table 2: An example of tuple tags.

Tag Description
crash Caused the data�ow to fail
debug Requires online debugging
display Needs to be displayed to the user
log Has to be stored in a log

pause Requires the data�ow execution to pause
trace Needs to be tracked through the execution
skip Has to skip the remaining transformations

level), (v) have very low overhead to the main data�ow job, and
(vi) be generic to common big data processing systems without
modifying them.

3 THE TAGSNIFF MODEL
We introduce the tag-and-sni� debugging abstraction, TagSni� for
short. TagSni� provides the data�ow instrumentation foundations
for supporting most online and post-hoc debugging tasks easily
and e�ectively. It is composed of two primitives, tag and sni�, that
operate on the debug tuple. A unique characteristic of these primi-
tives is that users can easily add custom debugging functionality
via user de�ned functions (UDF). In the following, we call TagSni�
system any system that implements this abstract debugging model.

Example 1 (Running example: Top100Words). We consider the task
of retrieving the top-100 most frequent words. The following listing
provides the (slightly simpli�ed) Spark code:

1 val tw = textFile.flatMap(l => l.split(� �))
2 val wc = tw.map(word => (word, 1))
3 val wct = wc.reduceByKey(_ + _)
4 val top100 = wct.top(100)

Listing 1: Top-100 frequent words (Top100Words).

Need for Data Debugging Systems

[BigDebug: Debugging Primitives for Interactive Big Data
Processing in Spark. ICSE, 2016]

[Scalable Lineage Capture for Debugging DISC Analytics.
SoCC, 2013]

[Arthur: Rich Post-Facto Debugging for Production
Analytics Applications. TR-UCBerkeley, 2013]

[Inspector Gadget: A Framework for Custom Monitoring
and Debugging of Distributed Dataflows. PVLDB, 2011]

[Inspector Gadget: A Framework for Custom Monitoring and Debugging of Distributed Dataflows. PVLDB, 2011]

[An empirical study on quality issues of production big data platform. ICSE, 2015]

Commonalities in Data Debugging

Instrument

Commonalities in Data Debugging

FindInstrument

Commonalities in Data Debugging

Find ActInstrument

Our Idea

Instrumentation Debugging

StreamSourcejob

Find ActInstrument

Our Idea

Instrumentation Debugging

StreamSourcejob

Instrument

Wrappers

Find ActInstrument

Our Idea

Instrumentation Debugging

StreamSourcejob

Instrument

 Find

Wrappers

Sniffers

Find ActInstrument

Our Idea

Instrumentation Debugging

StreamSourcejob

debug
tuplesInstrument

 Find

Wrappers

Sniffers

Find ActInstrument

Our Idea

Instrumentation Debugging

StreamSourcejob

debug
tuplesInstrument

 Find

 Act

Wrappers

Sniffers

Debugging
Tasks

Find ActInstrument

Our Idea

Instrumentation Debugging

StreamSourcejob

debug
tuples Act

Debugging
Tasks

Find ActInstrument

Instrument

 Find

Wrappers

Sniffers

Our Idea

Instrumentation Debugging

StreamSourcejob

debug
tuples Act

Debugging
Tasks

Find ActInstrument

Instrument

 Find

Wrappers

Sniffers

TagSniff
Model

Desiderata for Data Debugging

[Inspector Gadget: A Framework for Custom Monitoring and Debugging of Distributed Dataflows. PVLDB, 2011]

[An empirical study on quality issues of production big data platform. ICSE, 2015]

(1) Support for common debugging tasks:
Online — crash culprit, pause, alert
Post-hoc — replay, trace, profile, assert

Desiderata for Data Debugging

[Inspector Gadget: A Framework for Custom Monitoring and Debugging of Distributed Dataflows. PVLDB, 2011]

[An empirical study on quality issues of production big data platform. ICSE, 2015]

(1) Support for common debugging tasks:
Online — crash culprit, pause, alert
Post-hoc — replay, trace, profile, assert

(2) Concise: simple to code

Desiderata for Data Debugging

[Inspector Gadget: A Framework for Custom Monitoring and Debugging of Distributed Dataflows. PVLDB, 2011]

[An empirical study on quality issues of production big data platform. ICSE, 2015]

(1) Support for common debugging tasks:
Online — crash culprit, pause, alert
Post-hoc — replay, trace, profile, assert

(2) Concise: simple to code

(3) Flexible:
ad-hoc debugging scenarios and monitoring

Primitives
tag(f:tuple => tuple): annotates tuples

Instrument

Primitives

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A.�iané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

3.1 Debug Tuple
Let us �rst de�ne the debug tuple on which our primitives operate.
A debug tuple is the tuple1 that �ows between the data�ow opera-
tors whenever debugging is enabled. For example, in Listing 1 of
Example 1, datasets tw, wc, wt, and top100 would contain debug
tuples in debug mode. A debug tuple is composed of the original
tuple pre�xed with annotations and/or metadata: <|tag1|tag2|...,
<tuple>>. Typically annotations describe how users expect the
system to react, while metadata adds extra information to the tuples,
such as an identi�er. Table 2 illustrates an example set of annota-
tions. For simplicity, we refer to both annotations and metadata
as tags. Tags are inserted by either users or the debugging system
and mainly stem from data�ow instrumentation. The users can
manipulate these tags to support sophisticated debugging scenar-
ios, e. g., lineage. To enable this tag manipulation, we provide the
following methods on the debug tuple:
. add_tag (tag: String): Unit: takes as input a string value and
appends it in the tags of the debug tuple.
. get_tag (tag: String): String: returns all the tags that start
with the input string value.
. has_tag (tag: String) : Boolean: takes as input a string value
and returns true if this value exists in the tags of the tuple.
. get_all () : String: returns all the tags (annotations andmetadata)
of the debug tuple.

For simplicity reasons, we henceforth refer to a debug tuple
simply as tuple.

3.2 Tag and Sni� Primitives
Our guiding principle is to provide a streamlined set of instru-
mentation primitives that make common debugging tasks easy to
compose and custom debugging tasks possible. We describe these
primitives below:
. tag (f: tuple => tuple): It is used for adding tags to a tuple. The
input is a UDF that receives a tuple and outputs a new tuple with
any new tags users would like to append. A TagSni� system should
then react to such tags.
. sni� (f: tuple => Boolean): It is used for identifying tuples re-
quiring debugging or further analysis based on either their metadata
or values. The input is a UDF that receives a tuple and outputs true
or false depending on whether the user wants to analyze this tuple
or not. A TagSni� system is responsible for reacting to the sni�ed
tuples based on their tags.

A TagSni� system can materialize this abstract model in many
di�erent ways. We believe that two non-intrusive approaches for
exposing the tag and sni� primitives is to specify them as anno-
tations or additional methods in the data�ow. The system should
then handle these annotations or methods to convert them to the
appropriate code. This results in very little intrusion in the main
data�ow while still being easy to add.

3.3 Examples
Let us now present a couple of debugging tasks whose instrumen-
tation can be expressed with the TagSni� model without writing a
huge amount of boilerplate code.
1A tuple is any kind of data unit, e. g., a line text or a relational tuple.

Example 2 (Data Breakpoint). Suppose the user wants to add a data
breakpoint in Listing 1 for tuples containing a null value to further
inspect them. She would then write the tag and sni� primitives as
follows:

1 tag(t => if (t.contains(null)) t.add_tag(�pause�))
2 sniff(t => return t.has_tag(�pause�))

Listing 2: Add a breakpoint in tuples with null values.

Example 3 (Log). Suppose the user wants to log tuples that contain
null values to be used for tracing later on. She would then need to
generate an identi�er for each tuple and add it to the tuple’s metadata.
This could be done in the tag primitive, while the sni� primitive would
simply detect such tuples. Notice that the user can use an external
library to generate her own tuple identi�ers.

1 tag(t => if (t.contains(null)) {
2 id = Generator.generate_id(t)
3 t.add_tag(�id-�+id)
4 t.add_tag(�log�)})
5 sniff(t => return t.has_tag(�log�))

Listing 3: Log tuples with null values for tracing.

The above two examples show that users can instrument their
data�ows using the tag and sni� primitives only, without writing
huge amount of boilerplate code.

3.4 Discussion
Note that, as our goal is to keep the model as simple as possible,
we de�ned TagSni� at the tuple granularity only. The reader might
then wonder how to use TagSni� on a set of tuples, i. e., tagging
and sni�ng a set of tuples that satis�es a certain condition. This
is possible if the data�ow job itself contains an operator grouping
tuples, such as reduce, group, or join. Otherwise, one would have to
modify the data�ow or create a new one to check if some conditions
on a set of tuples hold. We consider this task as a data preparation/-
cleaning task, and not data debugging, and is thus out of the scope
of our framework. Still, one could do such checks with TagSni� in
a post-hoc manner (i. e., after the data�ow execution terminates)
as we will see in Section 5. To sum up, TagSni� is abstract enough
to be implemented at any granularity: from one tuple to a set of
tuples; from one operator to a set of operators; from one worker to
a set of workers.

4 ONLINE DEBUGGING
Online debugging takes place while the job is still running. Thus,
interactivity is crucial for online debugging as it allows users to
(i) add breakpoints for data inspection, (ii) be noti�ed with the
appropriate information when a crash is triggered, and (iii) be
alerted when certain conditions on the data are met. In contrast to
traditional code debugging, interactivity in big data applications is
mainly about the interplay between data and code. Therefore, new
interactivity functionalities are required.

In the following, we demonstrate the power of TagSni� by de-
scribing how it can be used for the three scenarios above. In partic-
ular, we discuss how a TagSni� system should react to speci�c tag
and sni� calls to support online debugging scenarios. We present
how a user can debug a job in a post-hoc manner in the next section.

Code snippet:
tag(f:tuple => tuple): annotates tuples

Instrument

Primitives

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A.�iané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

3.1 Debug Tuple
Let us �rst de�ne the debug tuple on which our primitives operate.
A debug tuple is the tuple1 that �ows between the data�ow opera-
tors whenever debugging is enabled. For example, in Listing 1 of
Example 1, datasets tw, wc, wt, and top100 would contain debug
tuples in debug mode. A debug tuple is composed of the original
tuple pre�xed with annotations and/or metadata: <|tag1|tag2|...,
<tuple>>. Typically annotations describe how users expect the
system to react, while metadata adds extra information to the tuples,
such as an identi�er. Table 2 illustrates an example set of annota-
tions. For simplicity, we refer to both annotations and metadata
as tags. Tags are inserted by either users or the debugging system
and mainly stem from data�ow instrumentation. The users can
manipulate these tags to support sophisticated debugging scenar-
ios, e. g., lineage. To enable this tag manipulation, we provide the
following methods on the debug tuple:
. add_tag (tag: String): Unit: takes as input a string value and
appends it in the tags of the debug tuple.
. get_tag (tag: String): String: returns all the tags that start
with the input string value.
. has_tag (tag: String) : Boolean: takes as input a string value
and returns true if this value exists in the tags of the tuple.
. get_all () : String: returns all the tags (annotations andmetadata)
of the debug tuple.

For simplicity reasons, we henceforth refer to a debug tuple
simply as tuple.

3.2 Tag and Sni� Primitives
Our guiding principle is to provide a streamlined set of instru-
mentation primitives that make common debugging tasks easy to
compose and custom debugging tasks possible. We describe these
primitives below:
. tag (f: tuple => tuple): It is used for adding tags to a tuple. The
input is a UDF that receives a tuple and outputs a new tuple with
any new tags users would like to append. A TagSni� system should
then react to such tags.
. sni� (f: tuple => Boolean): It is used for identifying tuples re-
quiring debugging or further analysis based on either their metadata
or values. The input is a UDF that receives a tuple and outputs true
or false depending on whether the user wants to analyze this tuple
or not. A TagSni� system is responsible for reacting to the sni�ed
tuples based on their tags.

A TagSni� system can materialize this abstract model in many
di�erent ways. We believe that two non-intrusive approaches for
exposing the tag and sni� primitives is to specify them as anno-
tations or additional methods in the data�ow. The system should
then handle these annotations or methods to convert them to the
appropriate code. This results in very little intrusion in the main
data�ow while still being easy to add.

3.3 Examples
Let us now present a couple of debugging tasks whose instrumen-
tation can be expressed with the TagSni� model without writing a
huge amount of boilerplate code.
1A tuple is any kind of data unit, e. g., a line text or a relational tuple.

Example 2 (Data Breakpoint). Suppose the user wants to add a data
breakpoint in Listing 1 for tuples containing a null value to further
inspect them. She would then write the tag and sni� primitives as
follows:

1 tag(t => if (t.contains(null)) t.add_tag(�pause�))
2 sniff(t => return t.has_tag(�pause�))

Listing 2: Add a breakpoint in tuples with null values.

Example 3 (Log). Suppose the user wants to log tuples that contain
null values to be used for tracing later on. She would then need to
generate an identi�er for each tuple and add it to the tuple’s metadata.
This could be done in the tag primitive, while the sni� primitive would
simply detect such tuples. Notice that the user can use an external
library to generate her own tuple identi�ers.

1 tag(t => if (t.contains(null)) {
2 id = Generator.generate_id(t)
3 t.add_tag(�id-�+id)
4 t.add_tag(�log�)})
5 sniff(t => return t.has_tag(�log�))

Listing 3: Log tuples with null values for tracing.

The above two examples show that users can instrument their
data�ows using the tag and sni� primitives only, without writing
huge amount of boilerplate code.

3.4 Discussion
Note that, as our goal is to keep the model as simple as possible,
we de�ned TagSni� at the tuple granularity only. The reader might
then wonder how to use TagSni� on a set of tuples, i. e., tagging
and sni�ng a set of tuples that satis�es a certain condition. This
is possible if the data�ow job itself contains an operator grouping
tuples, such as reduce, group, or join. Otherwise, one would have to
modify the data�ow or create a new one to check if some conditions
on a set of tuples hold. We consider this task as a data preparation/-
cleaning task, and not data debugging, and is thus out of the scope
of our framework. Still, one could do such checks with TagSni� in
a post-hoc manner (i. e., after the data�ow execution terminates)
as we will see in Section 5. To sum up, TagSni� is abstract enough
to be implemented at any granularity: from one tuple to a set of
tuples; from one operator to a set of operators; from one worker to
a set of workers.

4 ONLINE DEBUGGING
Online debugging takes place while the job is still running. Thus,
interactivity is crucial for online debugging as it allows users to
(i) add breakpoints for data inspection, (ii) be noti�ed with the
appropriate information when a crash is triggered, and (iii) be
alerted when certain conditions on the data are met. In contrast to
traditional code debugging, interactivity in big data applications is
mainly about the interplay between data and code. Therefore, new
interactivity functionalities are required.

In the following, we demonstrate the power of TagSni� by de-
scribing how it can be used for the three scenarios above. In partic-
ular, we discuss how a TagSni� system should react to speci�c tag
and sni� calls to support online debugging scenarios. We present
how a user can debug a job in a post-hoc manner in the next section.

Code snippet:
tag(f:tuple => tuple): annotates tuples

Instrument

<tag1|tag2|…, <att1, att2, … >>
annotations tuple

Primitives

<, <John, Smith, null>> <“pause”, <John, Smith, null>>tag

Example:

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A.�iané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

3.1 Debug Tuple
Let us �rst de�ne the debug tuple on which our primitives operate.
A debug tuple is the tuple1 that �ows between the data�ow opera-
tors whenever debugging is enabled. For example, in Listing 1 of
Example 1, datasets tw, wc, wt, and top100 would contain debug
tuples in debug mode. A debug tuple is composed of the original
tuple pre�xed with annotations and/or metadata: <|tag1|tag2|...,
<tuple>>. Typically annotations describe how users expect the
system to react, while metadata adds extra information to the tuples,
such as an identi�er. Table 2 illustrates an example set of annota-
tions. For simplicity, we refer to both annotations and metadata
as tags. Tags are inserted by either users or the debugging system
and mainly stem from data�ow instrumentation. The users can
manipulate these tags to support sophisticated debugging scenar-
ios, e. g., lineage. To enable this tag manipulation, we provide the
following methods on the debug tuple:
. add_tag (tag: String): Unit: takes as input a string value and
appends it in the tags of the debug tuple.
. get_tag (tag: String): String: returns all the tags that start
with the input string value.
. has_tag (tag: String) : Boolean: takes as input a string value
and returns true if this value exists in the tags of the tuple.
. get_all () : String: returns all the tags (annotations andmetadata)
of the debug tuple.

For simplicity reasons, we henceforth refer to a debug tuple
simply as tuple.

3.2 Tag and Sni� Primitives
Our guiding principle is to provide a streamlined set of instru-
mentation primitives that make common debugging tasks easy to
compose and custom debugging tasks possible. We describe these
primitives below:
. tag (f: tuple => tuple): It is used for adding tags to a tuple. The
input is a UDF that receives a tuple and outputs a new tuple with
any new tags users would like to append. A TagSni� system should
then react to such tags.
. sni� (f: tuple => Boolean): It is used for identifying tuples re-
quiring debugging or further analysis based on either their metadata
or values. The input is a UDF that receives a tuple and outputs true
or false depending on whether the user wants to analyze this tuple
or not. A TagSni� system is responsible for reacting to the sni�ed
tuples based on their tags.

A TagSni� system can materialize this abstract model in many
di�erent ways. We believe that two non-intrusive approaches for
exposing the tag and sni� primitives is to specify them as anno-
tations or additional methods in the data�ow. The system should
then handle these annotations or methods to convert them to the
appropriate code. This results in very little intrusion in the main
data�ow while still being easy to add.

3.3 Examples
Let us now present a couple of debugging tasks whose instrumen-
tation can be expressed with the TagSni� model without writing a
huge amount of boilerplate code.
1A tuple is any kind of data unit, e. g., a line text or a relational tuple.

Example 2 (Data Breakpoint). Suppose the user wants to add a data
breakpoint in Listing 1 for tuples containing a null value to further
inspect them. She would then write the tag and sni� primitives as
follows:

1 tag(t => if (t.contains(null)) t.add_tag(�pause�))
2 sniff(t => return t.has_tag(�pause�))

Listing 2: Add a breakpoint in tuples with null values.

Example 3 (Log). Suppose the user wants to log tuples that contain
null values to be used for tracing later on. She would then need to
generate an identi�er for each tuple and add it to the tuple’s metadata.
This could be done in the tag primitive, while the sni� primitive would
simply detect such tuples. Notice that the user can use an external
library to generate her own tuple identi�ers.

1 tag(t => if (t.contains(null)) {
2 id = Generator.generate_id(t)
3 t.add_tag(�id-�+id)
4 t.add_tag(�log�)})
5 sniff(t => return t.has_tag(�log�))

Listing 3: Log tuples with null values for tracing.

The above two examples show that users can instrument their
data�ows using the tag and sni� primitives only, without writing
huge amount of boilerplate code.

3.4 Discussion
Note that, as our goal is to keep the model as simple as possible,
we de�ned TagSni� at the tuple granularity only. The reader might
then wonder how to use TagSni� on a set of tuples, i. e., tagging
and sni�ng a set of tuples that satis�es a certain condition. This
is possible if the data�ow job itself contains an operator grouping
tuples, such as reduce, group, or join. Otherwise, one would have to
modify the data�ow or create a new one to check if some conditions
on a set of tuples hold. We consider this task as a data preparation/-
cleaning task, and not data debugging, and is thus out of the scope
of our framework. Still, one could do such checks with TagSni� in
a post-hoc manner (i. e., after the data�ow execution terminates)
as we will see in Section 5. To sum up, TagSni� is abstract enough
to be implemented at any granularity: from one tuple to a set of
tuples; from one operator to a set of operators; from one worker to
a set of workers.

4 ONLINE DEBUGGING
Online debugging takes place while the job is still running. Thus,
interactivity is crucial for online debugging as it allows users to
(i) add breakpoints for data inspection, (ii) be noti�ed with the
appropriate information when a crash is triggered, and (iii) be
alerted when certain conditions on the data are met. In contrast to
traditional code debugging, interactivity in big data applications is
mainly about the interplay between data and code. Therefore, new
interactivity functionalities are required.

In the following, we demonstrate the power of TagSni� by de-
scribing how it can be used for the three scenarios above. In partic-
ular, we discuss how a TagSni� system should react to speci�c tag
and sni� calls to support online debugging scenarios. We present
how a user can debug a job in a post-hoc manner in the next section.

Code snippet:
tag(f:tuple => tuple): annotates tuples

Instrument

<tag1|tag2|…, <att1, att2, … >>
annotations tuple

Primitives

<, <John, Smith, null>> <“pause”, <John, Smith, null>>tag

would contain debug
tuples in debug mode. A debug tuple is composed of the original

1 tag(t => if (t.contains(null)) t.add_tag(�pause�))
2 sniff(t => return t.has_tag(�pause�))

sniff(f:tuple => boolean): identify tuples for reacting

tag(f:tuple => tuple): annotates tuples
Code snippet:

Example:

Instrument

 Find

Primitives

<, <John, Smith, null>> <“pause”, <John, Smith, null>>tag

would contain debug
tuples in debug mode. A debug tuple is composed of the original

1 tag(t => if (t.contains(null)) t.add_tag(�pause�))
2 sniff(t => return t.has_tag(�pause�))

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A.�iané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

3.1 Debug Tuple
Let us �rst de�ne the debug tuple on which our primitives operate.
A debug tuple is the tuple1 that �ows between the data�ow opera-
tors whenever debugging is enabled. For example, in Listing 1 of
Example 1, datasets tw, wc, wt, and top100 would contain debug
tuples in debug mode. A debug tuple is composed of the original
tuple pre�xed with annotations and/or metadata: <|tag1|tag2|...,
<tuple>>. Typically annotations describe how users expect the
system to react, while metadata adds extra information to the tuples,
such as an identi�er. Table 2 illustrates an example set of annota-
tions. For simplicity, we refer to both annotations and metadata
as tags. Tags are inserted by either users or the debugging system
and mainly stem from data�ow instrumentation. The users can
manipulate these tags to support sophisticated debugging scenar-
ios, e. g., lineage. To enable this tag manipulation, we provide the
following methods on the debug tuple:
. add_tag (tag: String): Unit: takes as input a string value and
appends it in the tags of the debug tuple.
. get_tag (tag: String): String: returns all the tags that start
with the input string value.
. has_tag (tag: String) : Boolean: takes as input a string value
and returns true if this value exists in the tags of the tuple.
. get_all () : String: returns all the tags (annotations andmetadata)
of the debug tuple.

For simplicity reasons, we henceforth refer to a debug tuple
simply as tuple.

3.2 Tag and Sni� Primitives
Our guiding principle is to provide a streamlined set of instru-
mentation primitives that make common debugging tasks easy to
compose and custom debugging tasks possible. We describe these
primitives below:
. tag (f: tuple => tuple): It is used for adding tags to a tuple. The
input is a UDF that receives a tuple and outputs a new tuple with
any new tags users would like to append. A TagSni� system should
then react to such tags.
. sni� (f: tuple => Boolean): It is used for identifying tuples re-
quiring debugging or further analysis based on either their metadata
or values. The input is a UDF that receives a tuple and outputs true
or false depending on whether the user wants to analyze this tuple
or not. A TagSni� system is responsible for reacting to the sni�ed
tuples based on their tags.

A TagSni� system can materialize this abstract model in many
di�erent ways. We believe that two non-intrusive approaches for
exposing the tag and sni� primitives is to specify them as anno-
tations or additional methods in the data�ow. The system should
then handle these annotations or methods to convert them to the
appropriate code. This results in very little intrusion in the main
data�ow while still being easy to add.

3.3 Examples
Let us now present a couple of debugging tasks whose instrumen-
tation can be expressed with the TagSni� model without writing a
huge amount of boilerplate code.
1A tuple is any kind of data unit, e. g., a line text or a relational tuple.

Example 2 (Data Breakpoint). Suppose the user wants to add a data
breakpoint in Listing 1 for tuples containing a null value to further
inspect them. She would then write the tag and sni� primitives as
follows:

1 tag(t => if (t.contains(null)) t.add_tag(�pause�))
2 sniff(t => return t.has_tag(�pause�))

Listing 2: Add a breakpoint in tuples with null values.

Example 3 (Log). Suppose the user wants to log tuples that contain
null values to be used for tracing later on. She would then need to
generate an identi�er for each tuple and add it to the tuple’s metadata.
This could be done in the tag primitive, while the sni� primitive would
simply detect such tuples. Notice that the user can use an external
library to generate her own tuple identi�ers.

1 tag(t => if (t.contains(null)) {
2 id = Generator.generate_id(t)
3 t.add_tag(�id-�+id)
4 t.add_tag(�log�)})
5 sniff(t => return t.has_tag(�log�))

Listing 3: Log tuples with null values for tracing.

The above two examples show that users can instrument their
data�ows using the tag and sni� primitives only, without writing
huge amount of boilerplate code.

3.4 Discussion
Note that, as our goal is to keep the model as simple as possible,
we de�ned TagSni� at the tuple granularity only. The reader might
then wonder how to use TagSni� on a set of tuples, i. e., tagging
and sni�ng a set of tuples that satis�es a certain condition. This
is possible if the data�ow job itself contains an operator grouping
tuples, such as reduce, group, or join. Otherwise, one would have to
modify the data�ow or create a new one to check if some conditions
on a set of tuples hold. We consider this task as a data preparation/-
cleaning task, and not data debugging, and is thus out of the scope
of our framework. Still, one could do such checks with TagSni� in
a post-hoc manner (i. e., after the data�ow execution terminates)
as we will see in Section 5. To sum up, TagSni� is abstract enough
to be implemented at any granularity: from one tuple to a set of
tuples; from one operator to a set of operators; from one worker to
a set of workers.

4 ONLINE DEBUGGING
Online debugging takes place while the job is still running. Thus,
interactivity is crucial for online debugging as it allows users to
(i) add breakpoints for data inspection, (ii) be noti�ed with the
appropriate information when a crash is triggered, and (iii) be
alerted when certain conditions on the data are met. In contrast to
traditional code debugging, interactivity in big data applications is
mainly about the interplay between data and code. Therefore, new
interactivity functionalities are required.

In the following, we demonstrate the power of TagSni� by de-
scribing how it can be used for the three scenarios above. In partic-
ular, we discuss how a TagSni� system should react to speci�c tag
and sni� calls to support online debugging scenarios. We present
how a user can debug a job in a post-hoc manner in the next section.

Code snippet:
sniff(f:tuple => boolean): identify tuples for reacting

tag(f:tuple => tuple): annotates tuples
Code snippet:

Example:

Instrument

 Find

Primitives

<, <John, Smith, null>> <“pause”, <John, Smith, null>>tag

would contain debug
tuples in debug mode. A debug tuple is composed of the original

1 tag(t => if (t.contains(null)) t.add_tag(�pause�))
2 sniff(t => return t.has_tag(�pause�))

<“pause”, <John, Smith, null>> sniff

Example:
true

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A.�iané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

3.1 Debug Tuple
Let us �rst de�ne the debug tuple on which our primitives operate.
A debug tuple is the tuple1 that �ows between the data�ow opera-
tors whenever debugging is enabled. For example, in Listing 1 of
Example 1, datasets tw, wc, wt, and top100 would contain debug
tuples in debug mode. A debug tuple is composed of the original
tuple pre�xed with annotations and/or metadata: <|tag1|tag2|...,
<tuple>>. Typically annotations describe how users expect the
system to react, while metadata adds extra information to the tuples,
such as an identi�er. Table 2 illustrates an example set of annota-
tions. For simplicity, we refer to both annotations and metadata
as tags. Tags are inserted by either users or the debugging system
and mainly stem from data�ow instrumentation. The users can
manipulate these tags to support sophisticated debugging scenar-
ios, e. g., lineage. To enable this tag manipulation, we provide the
following methods on the debug tuple:
. add_tag (tag: String): Unit: takes as input a string value and
appends it in the tags of the debug tuple.
. get_tag (tag: String): String: returns all the tags that start
with the input string value.
. has_tag (tag: String) : Boolean: takes as input a string value
and returns true if this value exists in the tags of the tuple.
. get_all () : String: returns all the tags (annotations andmetadata)
of the debug tuple.

For simplicity reasons, we henceforth refer to a debug tuple
simply as tuple.

3.2 Tag and Sni� Primitives
Our guiding principle is to provide a streamlined set of instru-
mentation primitives that make common debugging tasks easy to
compose and custom debugging tasks possible. We describe these
primitives below:
. tag (f: tuple => tuple): It is used for adding tags to a tuple. The
input is a UDF that receives a tuple and outputs a new tuple with
any new tags users would like to append. A TagSni� system should
then react to such tags.
. sni� (f: tuple => Boolean): It is used for identifying tuples re-
quiring debugging or further analysis based on either their metadata
or values. The input is a UDF that receives a tuple and outputs true
or false depending on whether the user wants to analyze this tuple
or not. A TagSni� system is responsible for reacting to the sni�ed
tuples based on their tags.

A TagSni� system can materialize this abstract model in many
di�erent ways. We believe that two non-intrusive approaches for
exposing the tag and sni� primitives is to specify them as anno-
tations or additional methods in the data�ow. The system should
then handle these annotations or methods to convert them to the
appropriate code. This results in very little intrusion in the main
data�ow while still being easy to add.

3.3 Examples
Let us now present a couple of debugging tasks whose instrumen-
tation can be expressed with the TagSni� model without writing a
huge amount of boilerplate code.
1A tuple is any kind of data unit, e. g., a line text or a relational tuple.

Example 2 (Data Breakpoint). Suppose the user wants to add a data
breakpoint in Listing 1 for tuples containing a null value to further
inspect them. She would then write the tag and sni� primitives as
follows:

1 tag(t => if (t.contains(null)) t.add_tag(�pause�))
2 sniff(t => return t.has_tag(�pause�))

Listing 2: Add a breakpoint in tuples with null values.

Example 3 (Log). Suppose the user wants to log tuples that contain
null values to be used for tracing later on. She would then need to
generate an identi�er for each tuple and add it to the tuple’s metadata.
This could be done in the tag primitive, while the sni� primitive would
simply detect such tuples. Notice that the user can use an external
library to generate her own tuple identi�ers.

1 tag(t => if (t.contains(null)) {
2 id = Generator.generate_id(t)
3 t.add_tag(�id-�+id)
4 t.add_tag(�log�)})
5 sniff(t => return t.has_tag(�log�))

Listing 3: Log tuples with null values for tracing.

The above two examples show that users can instrument their
data�ows using the tag and sni� primitives only, without writing
huge amount of boilerplate code.

3.4 Discussion
Note that, as our goal is to keep the model as simple as possible,
we de�ned TagSni� at the tuple granularity only. The reader might
then wonder how to use TagSni� on a set of tuples, i. e., tagging
and sni�ng a set of tuples that satis�es a certain condition. This
is possible if the data�ow job itself contains an operator grouping
tuples, such as reduce, group, or join. Otherwise, one would have to
modify the data�ow or create a new one to check if some conditions
on a set of tuples hold. We consider this task as a data preparation/-
cleaning task, and not data debugging, and is thus out of the scope
of our framework. Still, one could do such checks with TagSni� in
a post-hoc manner (i. e., after the data�ow execution terminates)
as we will see in Section 5. To sum up, TagSni� is abstract enough
to be implemented at any granularity: from one tuple to a set of
tuples; from one operator to a set of operators; from one worker to
a set of workers.

4 ONLINE DEBUGGING
Online debugging takes place while the job is still running. Thus,
interactivity is crucial for online debugging as it allows users to
(i) add breakpoints for data inspection, (ii) be noti�ed with the
appropriate information when a crash is triggered, and (iii) be
alerted when certain conditions on the data are met. In contrast to
traditional code debugging, interactivity in big data applications is
mainly about the interplay between data and code. Therefore, new
interactivity functionalities are required.

In the following, we demonstrate the power of TagSni� by de-
scribing how it can be used for the three scenarios above. In partic-
ular, we discuss how a TagSni� system should react to speci�c tag
and sni� calls to support online debugging scenarios. We present
how a user can debug a job in a post-hoc manner in the next section.

Code snippet:
sniff(f:tuple => boolean): identify tuples for reacting

tag(f:tuple => tuple): annotates tuples
Code snippet:

Example:

Instrument

 Find

TagSniff Example

sniff(f:tuple => boolean): identify tuples for debugging

tag(f:tuple => tuple): annotates tuples Instrument

 Find

TagSni�: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

true for all tuples that contain the display tag so that a system
shows them to the user for further inspection.

1 tag(t => if (len(t) < 2) t.add_tag(�display�))
2 sniff(t => if (t.has_tag(�display�))
3 return true)

Listing 10: Skip tuples that failed an assertion.

Assert convenience method. We propose the convenience
method assert (tuple => Boolean) also built on top of the TagSni�
model. Listing 11 illustrates how this convenience method could
be used for the above scenario.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(w => len(w) < 2)
4 dse.collect().foreach(println)

Listing 11: Post-hoc assertion.

5.4 Performance Pro�ling
Performance pro�ling is the task of analyzing execution logs to
understand the data�ow footprint in terms of di�erent performance
metrics. For example, knowing the latency and throughput at either
the tuple or operator level.
Performance pro�ling with TagSni�. A particular interesting
scenario for performance pro�ling is straggler tuples, a pernicious
problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing
each tuple took so that bottlenecks could be identi�ed. This can
be achieved by running an ad-hoc data�ow on the logs in case the
logged tuples contain proper timestamps. If not, one could perform
selective replay with the tag and sni� in Listing 5: tag adds a times-
tamp to the tuple before and after the operator execution and sni�
checks if the latency of the tuple processing is above some thresh-
old. Alternatively, a user could use the assert convenience method.
For example, assume she wants to identify straggler tuples when
splitting lines into words (flatMap operator). Listing 12 illustrates
how she could use the assert convenience method to achieve this.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(t => {
4 time = put_in_array(t.get_tag(�timestamp�))
5 return (time[1] - time[0] > THRESHOLD)}
6 dse.collect().foreach(println)

Listing 12: Pro�ling.

6 A TAGSNIFF INSTANTIATION
We now discuss howwe put all together into S�����, a Spark-based
debugging system for monitoring and debugging Spark jobs. Note
that, although we designed the system for Spark, one could easily
adapt it for another data processing platform. This is thanks to its
implementation on top of Rheem [5–7] rather than on top of Spark
directly. Rheem translates the TagSni� primitives to Spark jobs, but
it could also produce code for any other underlying data processing
platform (e. g., a Flink job).

ReduceByKey

FlatMap

count

split

TextFile

Top

Map

Elastic  
StreamSource

In-Place Out-of-Place
dataflow instrumentation online & post-hoc debugging

logstuple 
re-insertion

tuples + metadata

on
lin

e
re

pa
ir

socket 

connection

m
on

ito
rin

g
(o

nl
in

e
no

tifi
ca

tio
ns

)

lo
gg

in
g

(p
os

t-h
oc

 d
eb

ug
gi

ng
)

top100 Words

au
xi

lia
ry

 d
at

afl
ow

s

UDF wrapper
(tag primitive)

Injected operator
(sniff primitive)

Figure 1: S����� internals.

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

S����� implements the tag and sni� primitives as well as the
convenience methods we proposed in the previous sections. It sup-
ports both in-place and out-of-place debugging, as illustrated in
Figure 1. The in-place debugging is essentially data�ow instru-
mentation. The out-of-place debugging is the analysis of the data
coming from the instrumentation and takes place in a separate set
of nodes that is not part of the cluster running the main data�ow.
S����� comes with a GUI whereby users can monitor their jobs
and interact with the system.

To better illustrate the functionalities of S����� and the user
interaction, in the following, we consider the example of �nding
the top-100 frequent words (Listing 1) and assume three example
scenarios: the user wants to (1) pause the job execution every 10k
input lines and inspect the intermediate results for the next two
operators (data breakpoint); (2) get an alert whenever a word takes
more than 60 seconds in the reduceByKey operator (alert); and
(3) catch any input line or word that makes the application crash
(crash culprit).

At the core of S����� API is the RDDbug2, which wraps the
Spark RDD to provide additional methods for the TagSni� prim-
itives and convenience methods. This enables users to easily in-
strument their jobs. In contrast to BigDebug [12] that instruments

2pronounced as “rd-debug”.

WordCount

`

`

TagSniff Logging Example

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A.�iané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

3.1 Debug Tuple
Let us �rst de�ne the debug tuple on which our primitives operate.
A debug tuple is the tuple1 that �ows between the data�ow opera-
tors whenever debugging is enabled. For example, in Listing 1 of
Example 1, datasets tw, wc, wt, and top100 would contain debug
tuples in debug mode. A debug tuple is composed of the original
tuple pre�xed with annotations and/or metadata: <|tag1|tag2|...,
<tuple>>. Typically annotations describe how users expect the
system to react, while metadata adds extra information to the tuples,
such as an identi�er. Table 2 illustrates an example set of annota-
tions. For simplicity, we refer to both annotations and metadata
as tags. Tags are inserted by either users or the debugging system
and mainly stem from data�ow instrumentation. The users can
manipulate these tags to support sophisticated debugging scenar-
ios, e. g., lineage. To enable this tag manipulation, we provide the
following methods on the debug tuple:
. add_tag (tag: String): Unit: takes as input a string value and
appends it in the tags of the debug tuple.
. get_tag (tag: String): String: returns all the tags that start
with the input string value.
. has_tag (tag: String) : Boolean: takes as input a string value
and returns true if this value exists in the tags of the tuple.
. get_all () : String: returns all the tags (annotations andmetadata)
of the debug tuple.

For simplicity reasons, we henceforth refer to a debug tuple
simply as tuple.

3.2 Tag and Sni� Primitives
Our guiding principle is to provide a streamlined set of instru-
mentation primitives that make common debugging tasks easy to
compose and custom debugging tasks possible. We describe these
primitives below:
. tag (f: tuple => tuple): It is used for adding tags to a tuple. The
input is a UDF that receives a tuple and outputs a new tuple with
any new tags users would like to append. A TagSni� system should
then react to such tags.
. sni� (f: tuple => Boolean): It is used for identifying tuples re-
quiring debugging or further analysis based on either their metadata
or values. The input is a UDF that receives a tuple and outputs true
or false depending on whether the user wants to analyze this tuple
or not. A TagSni� system is responsible for reacting to the sni�ed
tuples based on their tags.

A TagSni� system can materialize this abstract model in many
di�erent ways. We believe that two non-intrusive approaches for
exposing the tag and sni� primitives is to specify them as anno-
tations or additional methods in the data�ow. The system should
then handle these annotations or methods to convert them to the
appropriate code. This results in very little intrusion in the main
data�ow while still being easy to add.

3.3 Examples
Let us now present a couple of debugging tasks whose instrumen-
tation can be expressed with the TagSni� model without writing a
huge amount of boilerplate code.
1A tuple is any kind of data unit, e. g., a line text or a relational tuple.

Example 2 (Data Breakpoint). Suppose the user wants to add a data
breakpoint in Listing 1 for tuples containing a null value to further
inspect them. She would then write the tag and sni� primitives as
follows:

1 tag(t => if (t.contains(null)) t.add_tag(�pause�))
2 sniff(t => return t.has_tag(�pause�))

Listing 2: Add a breakpoint in tuples with null values.

Example 3 (Log). Suppose the user wants to log tuples that contain
null values to be used for tracing later on. She would then need to
generate an identi�er for each tuple and add it to the tuple’s metadata.
This could be done in the tag primitive, while the sni� primitive would
simply detect such tuples. Notice that the user can use an external
library to generate her own tuple identi�ers.

1 tag(t => if (t.contains(null)) {
2 id = Generator.generate_id(t)
3 t.add_tag(�id-�+id)
4 t.add_tag(�log�)})
5 sniff(t => return t.has_tag(�log�))

Listing 3: Log tuples with null values for tracing.

The above two examples show that users can instrument their
data�ows using the tag and sni� primitives only, without writing
huge amount of boilerplate code.

3.4 Discussion
Note that, as our goal is to keep the model as simple as possible,
we de�ned TagSni� at the tuple granularity only. The reader might
then wonder how to use TagSni� on a set of tuples, i. e., tagging
and sni�ng a set of tuples that satis�es a certain condition. This
is possible if the data�ow job itself contains an operator grouping
tuples, such as reduce, group, or join. Otherwise, one would have to
modify the data�ow or create a new one to check if some conditions
on a set of tuples hold. We consider this task as a data preparation/-
cleaning task, and not data debugging, and is thus out of the scope
of our framework. Still, one could do such checks with TagSni� in
a post-hoc manner (i. e., after the data�ow execution terminates)
as we will see in Section 5. To sum up, TagSni� is abstract enough
to be implemented at any granularity: from one tuple to a set of
tuples; from one operator to a set of operators; from one worker to
a set of workers.

4 ONLINE DEBUGGING
Online debugging takes place while the job is still running. Thus,
interactivity is crucial for online debugging as it allows users to
(i) add breakpoints for data inspection, (ii) be noti�ed with the
appropriate information when a crash is triggered, and (iii) be
alerted when certain conditions on the data are met. In contrast to
traditional code debugging, interactivity in big data applications is
mainly about the interplay between data and code. Therefore, new
interactivity functionalities are required.

In the following, we demonstrate the power of TagSni� by de-
scribing how it can be used for the three scenarios above. In partic-
ular, we discuss how a TagSni� system should react to speci�c tag
and sni� calls to support online debugging scenarios. We present
how a user can debug a job in a post-hoc manner in the next section.

Code snippet: logging all null values

Our Idea

Instrumentation Debugging

StreamSourcejob

debug
tuples

Find ActInstrument

Instrument

 Find

Wrappers

Sniffers Act

Debugging
Tasks

— A TagSniff Instantiation for Spark —
SNOOPY

Architecture

In-Place
(instrumentation)

Out-of-Place
(debugging)

StreamSource

logs

job

SNOOPY

debug
tuples

fixed
tuples

node 1
node 2

node 3
node 4

node 5
Production Cluster Debugging Cluster

Instrument

 Find

 Act

ling is the task of analyzing execution logs to
erent performance

metrics. For example, knowing the latency and throughput at either

A particular interesting
ling is straggler tuples, a pernicious

problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing

ed. This can
ow on the logs in case the

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

Tagging Tuples
Code snippet: pausing every 10k tuples

TagSni�: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

true for all tuples that contain the display tag so that a system
shows them to the user for further inspection.

1 tag(t => if (len(t) < 2) t.add_tag(�display�))
2 sniff(t => if (t.has_tag(�display�))
3 return true)

Listing 10: Skip tuples that failed an assertion.

Assert convenience method. We propose the convenience
method assert (tuple => Boolean) also built on top of the TagSni�
model. Listing 11 illustrates how this convenience method could
be used for the above scenario.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(w => len(w) < 2)
4 dse.collect().foreach(println)

Listing 11: Post-hoc assertion.

5.4 Performance Pro�ling
Performance pro�ling is the task of analyzing execution logs to
understand the data�ow footprint in terms of di�erent performance
metrics. For example, knowing the latency and throughput at either
the tuple or operator level.
Performance pro�ling with TagSni�. A particular interesting
scenario for performance pro�ling is straggler tuples, a pernicious
problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing
each tuple took so that bottlenecks could be identi�ed. This can
be achieved by running an ad-hoc data�ow on the logs in case the
logged tuples contain proper timestamps. If not, one could perform
selective replay with the tag and sni� in Listing 5: tag adds a times-
tamp to the tuple before and after the operator execution and sni�
checks if the latency of the tuple processing is above some thresh-
old. Alternatively, a user could use the assert convenience method.
For example, assume she wants to identify straggler tuples when
splitting lines into words (flatMap operator). Listing 12 illustrates
how she could use the assert convenience method to achieve this.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(t => {
4 time = put_in_array(t.get_tag(�timestamp�))
5 return (time[1] - time[0] > THRESHOLD)}
6 dse.collect().foreach(println)

Listing 12: Pro�ling.

6 A TAGSNIFF INSTANTIATION
We now discuss howwe put all together into S�����, a Spark-based
debugging system for monitoring and debugging Spark jobs. Note
that, although we designed the system for Spark, one could easily
adapt it for another data processing platform. This is thanks to its
implementation on top of Rheem [5–7] rather than on top of Spark
directly. Rheem translates the TagSni� primitives to Spark jobs, but
it could also produce code for any other underlying data processing
platform (e. g., a Flink job).

ReduceByKey

FlatMap

count

split

TextFile

Top

Map

Elastic  
StreamSource

In-Place Out-of-Place
dataflow instrumentation online & post-hoc debugging

logstuple 
re-insertion

tuples + metadata

on
lin

e
re

pa
ir

socket 

connection

m
on

ito
rin

g
(o

nl
in

e
no

tifi
ca

tio
ns

)

lo
gg

in
g

(p
os

t-h
oc

 d
eb

ug
gi

ng
)

top100 Words

au
xi

lia
ry

 d
at

afl
ow

s

UDF wrapper
(tag primitive)

Injected operator
(sniff primitive)

Figure 1: S����� internals.

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

S����� implements the tag and sni� primitives as well as the
convenience methods we proposed in the previous sections. It sup-
ports both in-place and out-of-place debugging, as illustrated in
Figure 1. The in-place debugging is essentially data�ow instru-
mentation. The out-of-place debugging is the analysis of the data
coming from the instrumentation and takes place in a separate set
of nodes that is not part of the cluster running the main data�ow.
S����� comes with a GUI whereby users can monitor their jobs
and interact with the system.

To better illustrate the functionalities of S����� and the user
interaction, in the following, we consider the example of �nding
the top-100 frequent words (Listing 1) and assume three example
scenarios: the user wants to (1) pause the job execution every 10k
input lines and inspect the intermediate results for the next two
operators (data breakpoint); (2) get an alert whenever a word takes
more than 60 seconds in the reduceByKey operator (alert); and
(3) catch any input line or word that makes the application crash
(crash culprit).

At the core of S����� API is the RDDbug2, which wraps the
Spark RDD to provide additional methods for the TagSni� prim-
itives and convenience methods. This enables users to easily in-
strument their jobs. In contrast to BigDebug [12] that instruments

2pronounced as “rd-debug”.

`

FlatMap

File

Map

ReduceByKey

WordCount
`

ling is the task of analyzing execution logs to
erent performance

metrics. For example, knowing the latency and throughput at either

A particular interesting
ling is straggler tuples, a pernicious

problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing

ed. This can
ow on the logs in case the

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

Tagging Tuples
Code snippet: pausing every 10k tuples

zoom

pre-tag

post-tag

udf

udf

Wrapper

File

TagSni�: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

true for all tuples that contain the display tag so that a system
shows them to the user for further inspection.

1 tag(t => if (len(t) < 2) t.add_tag(�display�))
2 sniff(t => if (t.has_tag(�display�))
3 return true)

Listing 10: Skip tuples that failed an assertion.

Assert convenience method. We propose the convenience
method assert (tuple => Boolean) also built on top of the TagSni�
model. Listing 11 illustrates how this convenience method could
be used for the above scenario.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(w => len(w) < 2)
4 dse.collect().foreach(println)

Listing 11: Post-hoc assertion.

5.4 Performance Pro�ling
Performance pro�ling is the task of analyzing execution logs to
understand the data�ow footprint in terms of di�erent performance
metrics. For example, knowing the latency and throughput at either
the tuple or operator level.
Performance pro�ling with TagSni�. A particular interesting
scenario for performance pro�ling is straggler tuples, a pernicious
problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing
each tuple took so that bottlenecks could be identi�ed. This can
be achieved by running an ad-hoc data�ow on the logs in case the
logged tuples contain proper timestamps. If not, one could perform
selective replay with the tag and sni� in Listing 5: tag adds a times-
tamp to the tuple before and after the operator execution and sni�
checks if the latency of the tuple processing is above some thresh-
old. Alternatively, a user could use the assert convenience method.
For example, assume she wants to identify straggler tuples when
splitting lines into words (flatMap operator). Listing 12 illustrates
how she could use the assert convenience method to achieve this.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(t => {
4 time = put_in_array(t.get_tag(�timestamp�))
5 return (time[1] - time[0] > THRESHOLD)}
6 dse.collect().foreach(println)

Listing 12: Pro�ling.

6 A TAGSNIFF INSTANTIATION
We now discuss howwe put all together into S�����, a Spark-based
debugging system for monitoring and debugging Spark jobs. Note
that, although we designed the system for Spark, one could easily
adapt it for another data processing platform. This is thanks to its
implementation on top of Rheem [5–7] rather than on top of Spark
directly. Rheem translates the TagSni� primitives to Spark jobs, but
it could also produce code for any other underlying data processing
platform (e. g., a Flink job).

ReduceByKey

FlatMap

count

split

TextFile

Top

Map

Elastic  
StreamSource

In-Place Out-of-Place
dataflow instrumentation online & post-hoc debugging

logstuple 
re-insertion

tuples + metadata

on
lin

e
re

pa
ir

socket 

connection

m
on

ito
rin

g
(o

nl
in

e
no

tifi
ca

tio
ns

)

lo
gg

in
g

(p
os

t-h
oc

 d
eb

ug
gi

ng
)

top100 Words

au
xi

lia
ry

 d
at

afl
ow

s

UDF wrapper
(tag primitive)

Injected operator
(sniff primitive)

Figure 1: S����� internals.

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

S����� implements the tag and sni� primitives as well as the
convenience methods we proposed in the previous sections. It sup-
ports both in-place and out-of-place debugging, as illustrated in
Figure 1. The in-place debugging is essentially data�ow instru-
mentation. The out-of-place debugging is the analysis of the data
coming from the instrumentation and takes place in a separate set
of nodes that is not part of the cluster running the main data�ow.
S����� comes with a GUI whereby users can monitor their jobs
and interact with the system.

To better illustrate the functionalities of S����� and the user
interaction, in the following, we consider the example of �nding
the top-100 frequent words (Listing 1) and assume three example
scenarios: the user wants to (1) pause the job execution every 10k
input lines and inspect the intermediate results for the next two
operators (data breakpoint); (2) get an alert whenever a word takes
more than 60 seconds in the reduceByKey operator (alert); and
(3) catch any input line or word that makes the application crash
(crash culprit).

At the core of S����� API is the RDDbug2, which wraps the
Spark RDD to provide additional methods for the TagSni� prim-
itives and convenience methods. This enables users to easily in-
strument their jobs. In contrast to BigDebug [12] that instruments

2pronounced as “rd-debug”.

`

FlatMap

File

Map

ReduceByKey

WordCount
`

Sniffing Tuples

ling is the task of analyzing execution logs to
erent performance

metrics. For example, knowing the latency and throughput at either

A particular interesting
ling is straggler tuples, a pernicious

problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing

ed. This can
ow on the logs in case the

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

Code snippet: pausing every 10k tuples

TagSni�: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

true for all tuples that contain the display tag so that a system
shows them to the user for further inspection.

1 tag(t => if (len(t) < 2) t.add_tag(�display�))
2 sniff(t => if (t.has_tag(�display�))
3 return true)

Listing 10: Skip tuples that failed an assertion.

Assert convenience method. We propose the convenience
method assert (tuple => Boolean) also built on top of the TagSni�
model. Listing 11 illustrates how this convenience method could
be used for the above scenario.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(w => len(w) < 2)
4 dse.collect().foreach(println)

Listing 11: Post-hoc assertion.

5.4 Performance Pro�ling
Performance pro�ling is the task of analyzing execution logs to
understand the data�ow footprint in terms of di�erent performance
metrics. For example, knowing the latency and throughput at either
the tuple or operator level.
Performance pro�ling with TagSni�. A particular interesting
scenario for performance pro�ling is straggler tuples, a pernicious
problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing
each tuple took so that bottlenecks could be identi�ed. This can
be achieved by running an ad-hoc data�ow on the logs in case the
logged tuples contain proper timestamps. If not, one could perform
selective replay with the tag and sni� in Listing 5: tag adds a times-
tamp to the tuple before and after the operator execution and sni�
checks if the latency of the tuple processing is above some thresh-
old. Alternatively, a user could use the assert convenience method.
For example, assume she wants to identify straggler tuples when
splitting lines into words (flatMap operator). Listing 12 illustrates
how she could use the assert convenience method to achieve this.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(t => {
4 time = put_in_array(t.get_tag(�timestamp�))
5 return (time[1] - time[0] > THRESHOLD)}
6 dse.collect().foreach(println)

Listing 12: Pro�ling.

6 A TAGSNIFF INSTANTIATION
We now discuss howwe put all together into S�����, a Spark-based
debugging system for monitoring and debugging Spark jobs. Note
that, although we designed the system for Spark, one could easily
adapt it for another data processing platform. This is thanks to its
implementation on top of Rheem [5–7] rather than on top of Spark
directly. Rheem translates the TagSni� primitives to Spark jobs, but
it could also produce code for any other underlying data processing
platform (e. g., a Flink job).

ReduceByKey

FlatMap

count

split

TextFile

Top

Map

Elastic  
StreamSource

In-Place Out-of-Place
dataflow instrumentation online & post-hoc debugging

logstuple 
re-insertion

tuples + metadata

on
lin

e
re

pa
ir

socket 

connection

m
on

ito
rin

g
(o

nl
in

e
no

tifi
ca

tio
ns

)

lo
gg

in
g

(p
os

t-h
oc

 d
eb

ug
gi

ng
)

top100 Words

au
xi

lia
ry

 d
at

afl
ow

s

UDF wrapper
(tag primitive)

Injected operator
(sniff primitive)

Figure 1: S����� internals.

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

S����� implements the tag and sni� primitives as well as the
convenience methods we proposed in the previous sections. It sup-
ports both in-place and out-of-place debugging, as illustrated in
Figure 1. The in-place debugging is essentially data�ow instru-
mentation. The out-of-place debugging is the analysis of the data
coming from the instrumentation and takes place in a separate set
of nodes that is not part of the cluster running the main data�ow.
S����� comes with a GUI whereby users can monitor their jobs
and interact with the system.

To better illustrate the functionalities of S����� and the user
interaction, in the following, we consider the example of �nding
the top-100 frequent words (Listing 1) and assume three example
scenarios: the user wants to (1) pause the job execution every 10k
input lines and inspect the intermediate results for the next two
operators (data breakpoint); (2) get an alert whenever a word takes
more than 60 seconds in the reduceByKey operator (alert); and
(3) catch any input line or word that makes the application crash
(crash culprit).

At the core of S����� API is the RDDbug2, which wraps the
Spark RDD to provide additional methods for the TagSni� prim-
itives and convenience methods. This enables users to easily in-
strument their jobs. In contrast to BigDebug [12] that instruments

2pronounced as “rd-debug”.

FlatMap

File

Map

ReduceByKey

WordCount
`

`

Sniffing Tuples

ling is the task of analyzing execution logs to
erent performance

metrics. For example, knowing the latency and throughput at either

A particular interesting
ling is straggler tuples, a pernicious

problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing

ed. This can
ow on the logs in case the

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

Code snippet: pausing every 10k tuples

udf

se
nd
er

re
ce
iv
er

sniff

inject
udf

false
true

Sniffer

zoom

TagSni�: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

true for all tuples that contain the display tag so that a system
shows them to the user for further inspection.

1 tag(t => if (len(t) < 2) t.add_tag(�display�))
2 sniff(t => if (t.has_tag(�display�))
3 return true)

Listing 10: Skip tuples that failed an assertion.

Assert convenience method. We propose the convenience
method assert (tuple => Boolean) also built on top of the TagSni�
model. Listing 11 illustrates how this convenience method could
be used for the above scenario.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(w => len(w) < 2)
4 dse.collect().foreach(println)

Listing 11: Post-hoc assertion.

5.4 Performance Pro�ling
Performance pro�ling is the task of analyzing execution logs to
understand the data�ow footprint in terms of di�erent performance
metrics. For example, knowing the latency and throughput at either
the tuple or operator level.
Performance pro�ling with TagSni�. A particular interesting
scenario for performance pro�ling is straggler tuples, a pernicious
problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing
each tuple took so that bottlenecks could be identi�ed. This can
be achieved by running an ad-hoc data�ow on the logs in case the
logged tuples contain proper timestamps. If not, one could perform
selective replay with the tag and sni� in Listing 5: tag adds a times-
tamp to the tuple before and after the operator execution and sni�
checks if the latency of the tuple processing is above some thresh-
old. Alternatively, a user could use the assert convenience method.
For example, assume she wants to identify straggler tuples when
splitting lines into words (flatMap operator). Listing 12 illustrates
how she could use the assert convenience method to achieve this.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(t => {
4 time = put_in_array(t.get_tag(�timestamp�))
5 return (time[1] - time[0] > THRESHOLD)}
6 dse.collect().foreach(println)

Listing 12: Pro�ling.

6 A TAGSNIFF INSTANTIATION
We now discuss howwe put all together into S�����, a Spark-based
debugging system for monitoring and debugging Spark jobs. Note
that, although we designed the system for Spark, one could easily
adapt it for another data processing platform. This is thanks to its
implementation on top of Rheem [5–7] rather than on top of Spark
directly. Rheem translates the TagSni� primitives to Spark jobs, but
it could also produce code for any other underlying data processing
platform (e. g., a Flink job).

ReduceByKey

FlatMap

count

split

TextFile

Top

Map

Elastic  
StreamSource

In-Place Out-of-Place
dataflow instrumentation online & post-hoc debugging

logstuple 
re-insertion

tuples + metadata

on
lin

e
re

pa
ir

socket 

connection

m
on

ito
rin

g
(o

nl
in

e
no

tifi
ca

tio
ns

)

lo
gg

in
g

(p
os

t-h
oc

 d
eb

ug
gi

ng
)

top100 Words

au
xi

lia
ry

 d
at

afl
ow

s

UDF wrapper
(tag primitive)

Injected operator
(sniff primitive)

Figure 1: S����� internals.

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

S����� implements the tag and sni� primitives as well as the
convenience methods we proposed in the previous sections. It sup-
ports both in-place and out-of-place debugging, as illustrated in
Figure 1. The in-place debugging is essentially data�ow instru-
mentation. The out-of-place debugging is the analysis of the data
coming from the instrumentation and takes place in a separate set
of nodes that is not part of the cluster running the main data�ow.
S����� comes with a GUI whereby users can monitor their jobs
and interact with the system.

To better illustrate the functionalities of S����� and the user
interaction, in the following, we consider the example of �nding
the top-100 frequent words (Listing 1) and assume three example
scenarios: the user wants to (1) pause the job execution every 10k
input lines and inspect the intermediate results for the next two
operators (data breakpoint); (2) get an alert whenever a word takes
more than 60 seconds in the reduceByKey operator (alert); and
(3) catch any input line or word that makes the application crash
(crash culprit).

At the core of S����� API is the RDDbug2, which wraps the
Spark RDD to provide additional methods for the TagSni� prim-
itives and convenience methods. This enables users to easily in-
strument their jobs. In contrast to BigDebug [12] that instruments

2pronounced as “rd-debug”.

FlatMap

File

Map

ReduceByKey

WordCount
`

`

Sniffing Tuples

ling is the task of analyzing execution logs to
erent performance

metrics. For example, knowing the latency and throughput at either

A particular interesting
ling is straggler tuples, a pernicious

problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing

ed. This can
ow on the logs in case the

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

Code snippet: pausing every 10k tuples

udf

se
nd
er

re
ce
iv
er

sniff

inject
udf

false
true

Sniffer

zoom

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A.�iané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

Spark jobs between stages, S����� allows for instrumentation, and
hence debugging, at the operator level. This allows more �exibility
in debugging at varying granularities, such as individual tuples,
RDD or a node. Also, in contrast to Inspector Gadget [18], our in-
strumentation is lightweight and the user does not have to learn a
new API. Listing 13 shows how she has to instrument the top-100
frequent words job to enable the three above debugging scenar-
ios. We use this as our running example to illustrate the system
functionality as well as the user interaction.

6.1 Tagging Tuples
To be able to annotate tuples, S����� adds a wrapper on each
UDF in the data�ow, e. g., split and count in the WordCount job of
Figure 1. The wrapper is mainly responsible for attaching system-
de�ned and user-de�ned tags to every single tuple before (pre-tag)
and after (post-tag) the tuple is processed by a Spark operator. The
user can optionally specify when to apply her tag function by
passing a PRE or POST constant as parameter in the setTag method.
S����� annotates a tuple using the UDF provided in the setTag
method of the RDDbug. By default, it also annotates a tuple with
a unique identi�er and the operator identi�er that transforms the
tuple. Note that S����� di�ers from Titian [14] in that it does not
modify the RDD itself but it simply adds the appropriate identi�ers
in the tuple metadata, which is then processed out-of-place.
User interaction. Let’s now see how the user should tag the tu-
ples in her job to enable the debugging example scenarios outlined
above. First, she has to invoke the setTag method on the RDDbug
to identify the input lines satisfying the pausing condition, i. e., ev-
ery 10k lines, and add the “pause" tag to these tuples (Line 2 in
Listing 13). For the alert scenario, she has to invoke the setTag
method on the reduceByKey operator and annotate a tuple with a
timestamp before the tuple is processed by the operator (via the
PRE constant in Line 7). She then annotates the tuple once it has
been processed by the operator (via the POST constant): She inputs
a UDF that parses the start timestamp of the tuple and adds the tag
“alert” if it took more than 60 seconds to be processed (Lines 8–10).
For the crash culprit scenario, she does not have to instrument the
data�ow. S����� handles crash culprits behind the scenes with-
out user intervention: it catches any runtime exception in the job
and invokes the setTag method in the operator where the crash
occurred to insert the tag “crash” as well as the exception trace,
such as in Listing 4.

6.2 Sni�ng Tuples
S����� reacts to tuple annotations by inspecting every single tuple
that �ows between two Spark operators and identi�es those tuples
requiring an action. It does so by injecting a sni�er operator (which
is a flatMap operator in Spark) between each pair of operators in
the data�ow. This sni�er operator identi�es tuples of interest by
applying the UDF function of the setSni� method. If it outputs
true, S����� needs to perform a given action. It can perform three
actions: (i) send a copy of the tuple out of the main data�ow for
out-of-place debugging (send-out action); (ii) remove the tuple from
the main data�ow (skip-tuple action); and/or (iii) pause the data�ow
execution (job-halt action). Table 3 illustrates how pre-de�ned tags
map to these actions. Users can add their own tags and map them

Table 3: Pre-de�ned tag-based actions.

Action Tuple tags

send-out alert, breakpoint, crash, display, fix, log,
profile, trace

skip-tuple crash, skip, fix
job-halt pause

to these actions via a con�guration �le. In this way, S����� is
extensible to ad-hoc debugging analysis that users may wish to
perform.

If the action that S����� has to perform is send-out, it clones
the entire tuple together with its metadata and sends the copy for
out-of-place debugging. It then clears the tuple metadata and sends
the tuple to the next downstream operator: it keeps only the tuple
identi�er and the trace tags (if they exist). Clearing the metadata
is crucial for keeping the memory overhead low. In case the tuple
requires a skip-tuple action, S����� does not put it back into the
data�ow.

If a job-halt action is required, S����� pauses the data�ow exe-
cution by simply holding the tuple3. As Spark processes tuples in a
pull-model fashion, holding a tuple causes the entire data�ow to
pause in that particular Spark worker: the sni�er does not request
for a new tuple to the upstream operator; the downstream operators
keep waiting for the next tuple to arrive. Additionally, if the job-
action is at the RDD level, the sni�er requests all the other sni�ers
located at the same position in the data�ow (level-mate sni�ers,
for short), but running on di�erent Spark workers, to pause too. In
case a level-mate sni�er is not active anymore, S����� forwards
the request to the �rst active sni�er in the downstream operators.
Then, all sni�ers resume the execution, either after a timeout or by
user instruction, by sending the held tuple to the next downstream
operator. S����� can resume the job by receiving the user’s instruc-
tion via the next_tuple or the next_operator convenience methods
(see Section 4.1). When receiving next_tuple, S����� removes the
“pause” tag from the current pausing tuple and sends it to the next
downstream operator. This causes the job execution to resume and
pause again whenever another pausing tuple is found. In the case of
receiving next_operator, S����� simply sends the pausing tuple to
the next downstream operator. In contrast to next_tuple, this causes
the job to resume and pause when the next operator (reduceByKey
in our example) �nishes processing the pausing tuple.
User interaction. Let us discuss now how the user has to in-
strument her job to enable S����� to sni� tuples. For the data
breakpoint scenario, she has to inject her setSni� method two op-
erators after her setTag method (Line 5) so that she can inspect
the intermediate results in this part of the data�ow. S�����, thus,
pauses and sends the intermediate results to the GUI whereby
she can resume the job by invoking either the next_tuple or the
next_operator convenience methods (see Section 4.1). For the alert
scenario, she invokes the setSni� method right after its correspond-
ing setTag methods (Lines 7–10). She inputs a UDF to send-out
every tuple with an “alert” tag for displaying it to the user. Finally,

3We discuss how it achieves a simulated pause in Section 6.3.

TagSni�: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

true for all tuples that contain the display tag so that a system
shows them to the user for further inspection.

1 tag(t => if (len(t) < 2) t.add_tag(�display�))
2 sniff(t => if (t.has_tag(�display�))
3 return true)

Listing 10: Skip tuples that failed an assertion.

Assert convenience method. We propose the convenience
method assert (tuple => Boolean) also built on top of the TagSni�
model. Listing 11 illustrates how this convenience method could
be used for the above scenario.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(w => len(w) < 2)
4 dse.collect().foreach(println)

Listing 11: Post-hoc assertion.

5.4 Performance Pro�ling
Performance pro�ling is the task of analyzing execution logs to
understand the data�ow footprint in terms of di�erent performance
metrics. For example, knowing the latency and throughput at either
the tuple or operator level.
Performance pro�ling with TagSni�. A particular interesting
scenario for performance pro�ling is straggler tuples, a pernicious
problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing
each tuple took so that bottlenecks could be identi�ed. This can
be achieved by running an ad-hoc data�ow on the logs in case the
logged tuples contain proper timestamps. If not, one could perform
selective replay with the tag and sni� in Listing 5: tag adds a times-
tamp to the tuple before and after the operator execution and sni�
checks if the latency of the tuple processing is above some thresh-
old. Alternatively, a user could use the assert convenience method.
For example, assume she wants to identify straggler tuples when
splitting lines into words (flatMap operator). Listing 12 illustrates
how she could use the assert convenience method to achieve this.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(t => {
4 time = put_in_array(t.get_tag(�timestamp�))
5 return (time[1] - time[0] > THRESHOLD)}
6 dse.collect().foreach(println)

Listing 12: Pro�ling.

6 A TAGSNIFF INSTANTIATION
We now discuss howwe put all together into S�����, a Spark-based
debugging system for monitoring and debugging Spark jobs. Note
that, although we designed the system for Spark, one could easily
adapt it for another data processing platform. This is thanks to its
implementation on top of Rheem [5–7] rather than on top of Spark
directly. Rheem translates the TagSni� primitives to Spark jobs, but
it could also produce code for any other underlying data processing
platform (e. g., a Flink job).

ReduceByKey

FlatMap

count

split

TextFile

Top

Map

Elastic  
StreamSource

In-Place Out-of-Place
dataflow instrumentation online & post-hoc debugging

logstuple 
re-insertion

tuples + metadata

on
lin

e
re

pa
ir

socket 

connection

m
on

ito
rin

g
(o

nl
in

e
no

tifi
ca

tio
ns

)

lo
gg

in
g

(p
os

t-h
oc

 d
eb

ug
gi

ng
)

top100 Words

au
xi

lia
ry

 d
at

afl
ow

s

UDF wrapper
(tag primitive)

Injected operator
(sniff primitive)

Figure 1: S����� internals.

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

S����� implements the tag and sni� primitives as well as the
convenience methods we proposed in the previous sections. It sup-
ports both in-place and out-of-place debugging, as illustrated in
Figure 1. The in-place debugging is essentially data�ow instru-
mentation. The out-of-place debugging is the analysis of the data
coming from the instrumentation and takes place in a separate set
of nodes that is not part of the cluster running the main data�ow.
S����� comes with a GUI whereby users can monitor their jobs
and interact with the system.

To better illustrate the functionalities of S����� and the user
interaction, in the following, we consider the example of �nding
the top-100 frequent words (Listing 1) and assume three example
scenarios: the user wants to (1) pause the job execution every 10k
input lines and inspect the intermediate results for the next two
operators (data breakpoint); (2) get an alert whenever a word takes
more than 60 seconds in the reduceByKey operator (alert); and
(3) catch any input line or word that makes the application crash
(crash culprit).

At the core of S����� API is the RDDbug2, which wraps the
Spark RDD to provide additional methods for the TagSni� prim-
itives and convenience methods. This enables users to easily in-
strument their jobs. In contrast to BigDebug [12] that instruments

2pronounced as “rd-debug”.

FlatMap

File

Map

ReduceByKey

WordCount
`

`

In-Place
(instrumentation)

Out-of-Place
(debugging)

StreamSource

logs

SNOOPY

— Perf. Bottleneck Example —
Debugging Tuples

`

TagSni�: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

true for all tuples that contain the display tag so that a system
shows them to the user for further inspection.

1 tag(t => if (len(t) < 2) t.add_tag(�display�))
2 sniff(t => if (t.has_tag(�display�))
3 return true)

Listing 10: Skip tuples that failed an assertion.

Assert convenience method. We propose the convenience
method assert (tuple => Boolean) also built on top of the TagSni�
model. Listing 11 illustrates how this convenience method could
be used for the above scenario.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(w => len(w) < 2)
4 dse.collect().foreach(println)

Listing 11: Post-hoc assertion.

5.4 Performance Pro�ling
Performance pro�ling is the task of analyzing execution logs to
understand the data�ow footprint in terms of di�erent performance
metrics. For example, knowing the latency and throughput at either
the tuple or operator level.
Performance pro�ling with TagSni�. A particular interesting
scenario for performance pro�ling is straggler tuples, a pernicious
problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing
each tuple took so that bottlenecks could be identi�ed. This can
be achieved by running an ad-hoc data�ow on the logs in case the
logged tuples contain proper timestamps. If not, one could perform
selective replay with the tag and sni� in Listing 5: tag adds a times-
tamp to the tuple before and after the operator execution and sni�
checks if the latency of the tuple processing is above some thresh-
old. Alternatively, a user could use the assert convenience method.
For example, assume she wants to identify straggler tuples when
splitting lines into words (flatMap operator). Listing 12 illustrates
how she could use the assert convenience method to achieve this.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(t => {
4 time = put_in_array(t.get_tag(�timestamp�))
5 return (time[1] - time[0] > THRESHOLD)}
6 dse.collect().foreach(println)

Listing 12: Pro�ling.

6 A TAGSNIFF INSTANTIATION
We now discuss howwe put all together into S�����, a Spark-based
debugging system for monitoring and debugging Spark jobs. Note
that, although we designed the system for Spark, one could easily
adapt it for another data processing platform. This is thanks to its
implementation on top of Rheem [5–7] rather than on top of Spark
directly. Rheem translates the TagSni� primitives to Spark jobs, but
it could also produce code for any other underlying data processing
platform (e. g., a Flink job).

ReduceByKey

FlatMap

count

split

TextFile

Top

Map

Elastic  
StreamSource

In-Place Out-of-Place
dataflow instrumentation online & post-hoc debugging

logstuple 
re-insertion

tuples + metadata

on
lin

e
re

pa
ir

socket 

connection

m
on

ito
rin

g
(o

nl
in

e
no

tifi
ca

tio
ns

)

lo
gg

in
g

(p
os

t-h
oc

 d
eb

ug
gi

ng
)

top100 Words

au
xi

lia
ry

 d
at

afl
ow

s

UDF wrapper
(tag primitive)

Injected operator
(sniff primitive)

Figure 1: S����� internals.

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

S����� implements the tag and sni� primitives as well as the
convenience methods we proposed in the previous sections. It sup-
ports both in-place and out-of-place debugging, as illustrated in
Figure 1. The in-place debugging is essentially data�ow instru-
mentation. The out-of-place debugging is the analysis of the data
coming from the instrumentation and takes place in a separate set
of nodes that is not part of the cluster running the main data�ow.
S����� comes with a GUI whereby users can monitor their jobs
and interact with the system.

To better illustrate the functionalities of S����� and the user
interaction, in the following, we consider the example of �nding
the top-100 frequent words (Listing 1) and assume three example
scenarios: the user wants to (1) pause the job execution every 10k
input lines and inspect the intermediate results for the next two
operators (data breakpoint); (2) get an alert whenever a word takes
more than 60 seconds in the reduceByKey operator (alert); and
(3) catch any input line or word that makes the application crash
(crash culprit).

At the core of S����� API is the RDDbug2, which wraps the
Spark RDD to provide additional methods for the TagSni� prim-
itives and convenience methods. This enables users to easily in-
strument their jobs. In contrast to BigDebug [12] that instruments

2pronounced as “rd-debug”.

`

In-Place
(instrumentation)

Out-of-Place
(debugging)

StreamSource

logs

SNOOPY

— Perf. Bottleneck Example —
Debugging Tuples

`

TagSni�: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

true for all tuples that contain the display tag so that a system
shows them to the user for further inspection.

1 tag(t => if (len(t) < 2) t.add_tag(�display�))
2 sniff(t => if (t.has_tag(�display�))
3 return true)

Listing 10: Skip tuples that failed an assertion.

Assert convenience method. We propose the convenience
method assert (tuple => Boolean) also built on top of the TagSni�
model. Listing 11 illustrates how this convenience method could
be used for the above scenario.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(w => len(w) < 2)
4 dse.collect().foreach(println)

Listing 11: Post-hoc assertion.

5.4 Performance Pro�ling
Performance pro�ling is the task of analyzing execution logs to
understand the data�ow footprint in terms of di�erent performance
metrics. For example, knowing the latency and throughput at either
the tuple or operator level.
Performance pro�ling with TagSni�. A particular interesting
scenario for performance pro�ling is straggler tuples, a pernicious
problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing
each tuple took so that bottlenecks could be identi�ed. This can
be achieved by running an ad-hoc data�ow on the logs in case the
logged tuples contain proper timestamps. If not, one could perform
selective replay with the tag and sni� in Listing 5: tag adds a times-
tamp to the tuple before and after the operator execution and sni�
checks if the latency of the tuple processing is above some thresh-
old. Alternatively, a user could use the assert convenience method.
For example, assume she wants to identify straggler tuples when
splitting lines into words (flatMap operator). Listing 12 illustrates
how she could use the assert convenience method to achieve this.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(t => {
4 time = put_in_array(t.get_tag(�timestamp�))
5 return (time[1] - time[0] > THRESHOLD)}
6 dse.collect().foreach(println)

Listing 12: Pro�ling.

6 A TAGSNIFF INSTANTIATION
We now discuss howwe put all together into S�����, a Spark-based
debugging system for monitoring and debugging Spark jobs. Note
that, although we designed the system for Spark, one could easily
adapt it for another data processing platform. This is thanks to its
implementation on top of Rheem [5–7] rather than on top of Spark
directly. Rheem translates the TagSni� primitives to Spark jobs, but
it could also produce code for any other underlying data processing
platform (e. g., a Flink job).

ReduceByKey

FlatMap

count

split

TextFile

Top

Map

Elastic  
StreamSource

In-Place Out-of-Place
dataflow instrumentation online & post-hoc debugging

logstuple 
re-insertion

tuples + metadata

on
lin

e
re

pa
ir

socket 

connection

m
on

ito
rin

g
(o

nl
in

e
no

tifi
ca

tio
ns

)

lo
gg

in
g

(p
os

t-h
oc

 d
eb

ug
gi

ng
)

top100 Words

au
xi

lia
ry

 d
at

afl
ow

s

UDF wrapper
(tag primitive)

Injected operator
(sniff primitive)

Figure 1: S����� internals.

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

S����� implements the tag and sni� primitives as well as the
convenience methods we proposed in the previous sections. It sup-
ports both in-place and out-of-place debugging, as illustrated in
Figure 1. The in-place debugging is essentially data�ow instru-
mentation. The out-of-place debugging is the analysis of the data
coming from the instrumentation and takes place in a separate set
of nodes that is not part of the cluster running the main data�ow.
S����� comes with a GUI whereby users can monitor their jobs
and interact with the system.

To better illustrate the functionalities of S����� and the user
interaction, in the following, we consider the example of �nding
the top-100 frequent words (Listing 1) and assume three example
scenarios: the user wants to (1) pause the job execution every 10k
input lines and inspect the intermediate results for the next two
operators (data breakpoint); (2) get an alert whenever a word takes
more than 60 seconds in the reduceByKey operator (alert); and
(3) catch any input line or word that makes the application crash
(crash culprit).

At the core of S����� API is the RDDbug2, which wraps the
Spark RDD to provide additional methods for the TagSni� prim-
itives and convenience methods. This enables users to easily in-
strument their jobs. In contrast to BigDebug [12] that instruments

2pronounced as “rd-debug”.

`

In-Place
(instrumentation)

Out-of-Place
(debugging)

StreamSource

logs

SNOOPY

large
groups

— Perf. Bottleneck Example —
Debugging Tuples

`

TagSni�: Simplified Big Data Debugging for Dataflow Jobs SoCC ’19, November 20-23, Santa Cruz, CA

true for all tuples that contain the display tag so that a system
shows them to the user for further inspection.

1 tag(t => if (len(t) < 2) t.add_tag(�display�))
2 sniff(t => if (t.has_tag(�display�))
3 return true)

Listing 10: Skip tuples that failed an assertion.

Assert convenience method. We propose the convenience
method assert (tuple => Boolean) also built on top of the TagSni�
model. Listing 11 illustrates how this convenience method could
be used for the above scenario.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(w => len(w) < 2)
4 dse.collect().foreach(println)

Listing 11: Post-hoc assertion.

5.4 Performance Pro�ling
Performance pro�ling is the task of analyzing execution logs to
understand the data�ow footprint in terms of di�erent performance
metrics. For example, knowing the latency and throughput at either
the tuple or operator level.
Performance pro�ling with TagSni�. A particular interesting
scenario for performance pro�ling is straggler tuples, a pernicious
problem in big data analytics. Most data processing systems, such
as Spark, only provide coarse monitoring support at the job and
worker level. Often, it is important to know how long processing
each tuple took so that bottlenecks could be identi�ed. This can
be achieved by running an ad-hoc data�ow on the logs in case the
logged tuples contain proper timestamps. If not, one could perform
selective replay with the tag and sni� in Listing 5: tag adds a times-
tamp to the tuple before and after the operator execution and sni�
checks if the latency of the tuple processing is above some thresh-
old. Alternatively, a user could use the assert convenience method.
For example, assume she wants to identify straggler tuples when
splitting lines into words (flatMap operator). Listing 12 illustrates
how she could use the assert convenience method to achieve this.

1 val r = new Reader(�debugging.log�)
2 val ds = r.get_dataset(1)
3 val dse = ds.assert(t => {
4 time = put_in_array(t.get_tag(�timestamp�))
5 return (time[1] - time[0] > THRESHOLD)}
6 dse.collect().foreach(println)

Listing 12: Pro�ling.

6 A TAGSNIFF INSTANTIATION
We now discuss howwe put all together into S�����, a Spark-based
debugging system for monitoring and debugging Spark jobs. Note
that, although we designed the system for Spark, one could easily
adapt it for another data processing platform. This is thanks to its
implementation on top of Rheem [5–7] rather than on top of Spark
directly. Rheem translates the TagSni� primitives to Spark jobs, but
it could also produce code for any other underlying data processing
platform (e. g., a Flink job).

ReduceByKey

FlatMap

count

split

TextFile

Top

Map

Elastic  
StreamSource

In-Place Out-of-Place
dataflow instrumentation online & post-hoc debugging

logstuple 
re-insertion

tuples + metadata

on
lin

e
re

pa
ir

socket 

connection

m
on

ito
rin

g
(o

nl
in

e
no

tifi
ca

tio
ns

)

lo
gg

in
g

(p
os

t-h
oc

 d
eb

ug
gi

ng
)

top100 Words

au
xi

lia
ry

 d
at

afl
ow

s

UDF wrapper
(tag primitive)

Injected operator
(sniff primitive)

Figure 1: S����� internals.

1 val ln = new RDDbug(spark.textFile(file))
2 .setTag(t => if (line_number(t) % 10000 == 0)

t.add_tag(�pause�))
3 val tw = ln.flatMap(l => l.split(� �)))
4 val wc = tw.map(word => (word, 1))
5 .setSniff(t => return t.has_tag(�pause�))
6 val wct = wc.reduceByKey(_ + _)
7 .setTag(t => t.add_tag(�now-�+ System.currentTimeMillis()), PRE)
8 .setTag(t => {t_start = put_in_array(t.get_tag(�now�))
9 if (System.currentTimeMillis() - t_start > 60000)
10 t.add_tag(�alert�)}, POST)
11 .setSniff(t => return t.has_tag(�alert�))
12 val top100 = wct.top(100)

Listing 13: Instrumented Top100Words job.

S����� implements the tag and sni� primitives as well as the
convenience methods we proposed in the previous sections. It sup-
ports both in-place and out-of-place debugging, as illustrated in
Figure 1. The in-place debugging is essentially data�ow instru-
mentation. The out-of-place debugging is the analysis of the data
coming from the instrumentation and takes place in a separate set
of nodes that is not part of the cluster running the main data�ow.
S����� comes with a GUI whereby users can monitor their jobs
and interact with the system.

To better illustrate the functionalities of S����� and the user
interaction, in the following, we consider the example of �nding
the top-100 frequent words (Listing 1) and assume three example
scenarios: the user wants to (1) pause the job execution every 10k
input lines and inspect the intermediate results for the next two
operators (data breakpoint); (2) get an alert whenever a word takes
more than 60 seconds in the reduceByKey operator (alert); and
(3) catch any input line or word that makes the application crash
(crash culprit).

At the core of S����� API is the RDDbug2, which wraps the
Spark RDD to provide additional methods for the TagSni� prim-
itives and convenience methods. This enables users to easily in-
strument their jobs. In contrast to BigDebug [12] that instruments

2pronounced as “rd-debug”.

`

SNOOPY Performance
SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A.�iané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

Spark

5%
5%

5%

6%

SNOOPY overhead

�1

(a) Grep

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

5%

7%

7%
7%

SNOOPY overheadSpark

�1

(b) WordCount
Ru

nt
im

e
(s

)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

Spark

5%
6%

5%
7%

SNOOPY overhead

�1

(c) Join

Figure 2: Overhead when debugging Spark jobs with S�����.

Ru
nt

im
e

(s
)

0

25

50

75

100

Number of sniffers
0 1 2 4 8 16 32

Spark

5% 6% 6% 8% 7% 8%

SNOOPY overhead

�1

(a) Data�ow size

Ru
nt

im
e

(s
)

0

17.5

35

52.5

70

Number of nodes
2 4 8 16 30

Spark

5%

6%

6% 5% 5%

SNOOPY overhead

�1

(b) Cluster size

Figure 3: S����� scalability.

and operator identi�ers). We measure the runtime of a task running
on Spark without any debugging (Spark) and the runtime of the
task with debugging. We then report the di�erence (overhead).

Figure 2 illustrates the results of this set of experiments. Overall,
we observe that S����� incurs a very low overhead of only 5-7%
regardless of the task or dataset size. This is because the out-of-
place debugger absorbs most of the overhead. Recall that the actual
debugging, e. g., �xing or formattingmalformed tuples, is done apart
from the cluster running the main data�ow. Thus, the overhead
depends mostly on the socket connections that the out-of-place
debugger receives and hence on the number of sni�ers. The number
of sni�ers in these three tasks is small: it ranges from 2 to 7. This
is why S����� has a similar incurred overhead for all three tasks.
In the following, we shall show the scalability of S����� in terms
of number of sni�ers. These results show the high performance
e�ciency of S�����, which leads to retaining the Spark execution
time almost intact. This means one can use S����� in production.
In fact, it incurs 10x less overhead than BigDebug [12] for grep and
wordcount.

7.2 Scalability
We now evaluate the scalability of S����� in terms of data�ow and
cluster size.
Increasing data�ow size. For this experiment, we composed
synthetic Spark jobs with varying number of operators, from 2
to 33, and instrumented them with one sni�er per operator pair
connection. We considered the Wikipedia-abstracts dataset with
a size of 10 GB. Figure 3(a) shows the results. As we noted earlier,
the overhead depends on the number of sni�ers instrumented in

the data�ow. We observe how the overhead incurred by S�����
increases slightly as the number of sni�ers increases. This is because
the out-of-the place debugger has to deal with more connected
sni�ers. Still, we observe that S����� scales gracefully to large
data�ows. For instance, for a data�ow of 33 operators (i. e., 32
sni�ers), which is already a relatively large data�ow in practice,
the overhead is only 8%.
Increasing number of compute nodes. The goal of this exper-
iment is to determine if S����� allows Spark to retain its node
scalability. For this experiment, we used the grep task with an input
dataset size of 10 GB and varied the number of compute nodes.
Figure 3(b) illustrates the results. We observe that S����� incurs
an almost constant overhead: it ranges from 5% to 6%. This minor
di�erence is mainly due to the cluster variance.

Therefore, the above results allow us to conclude that S�����
scales gracefully with the data�ow size and along with Spark for
increasingly larger clusters.

7.3 Responsiveness
We end our evaluation with a set of experiments to evaluate how re-
sponsive S����� is to system events (e. g., alerts and crashes) as well
as user instructions (e. g., system pauses and tuple re-injections).
For this, we consider two debugging scenarios for the join task on
100GB: crash culprit and online debugging.
Crash culprit. Recall a crash culprit is a tuple that causes the
data�ow to fail. We constructed this scenario by inserting a varying
number of tuples with null values into the input dataset, which
causes the join task to fail. S����� catches such exceptions and
sends them to the out-of-place debugger for user inspection (system-
event). The user inspects and �xes the failing tuple (tuple-repair).
Then, she re-inserts the �xed tuple into the main data�ow (user-
instruction). We report the average times only for the system-event
and user-instruction, because the tuple-repair time depends on
several external factors.

Figure 4(a) shows the results of this experiment. The x-axis
shows the total number of system events and, thus, user interac-
tions (i. e., the number of crash culprits). We observe that S�����
ensures an immediate response to system events as well as to user
instructions. From the moment a crash occurs, in the worst case
(when having 10 failing tuples), it will take (i) 16.7 ms to send the
crash culprit (the failing tuple with its metadata) to the user for

JoinWordCount

Snoopy Scalability

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A.�iané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

Spark

5%
5%

5%

6%

SNOOPY overhead

�1

(a) Grep

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

5%

7%

7%
7%

SNOOPY overheadSpark

�1

(b) WordCount

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

Spark

5%
6%

5%
7%

SNOOPY overhead

�1

(c) Join

Figure 2: Overhead when debugging Spark jobs with S�����.

Ru
nt

im
e

(s
)

0

25

50

75

100

Number of sniffers
0 1 2 4 8 16 32

Spark

5% 6% 6% 8% 7% 8%

SNOOPY overhead

�1

(a) Data�ow size
Ru

nt
im

e
(s

)

0

17.5

35

52.5

70

Number of nodes
2 4 8 16 30

Spark

5%

6%

6% 5% 5%

SNOOPY overhead

�1

(b) Cluster size

Figure 3: S����� scalability.

and operator identi�ers). We measure the runtime of a task running
on Spark without any debugging (Spark) and the runtime of the
task with debugging. We then report the di�erence (overhead).

Figure 2 illustrates the results of this set of experiments. Overall,
we observe that S����� incurs a very low overhead of only 5-7%
regardless of the task or dataset size. This is because the out-of-
place debugger absorbs most of the overhead. Recall that the actual
debugging, e. g., �xing or formattingmalformed tuples, is done apart
from the cluster running the main data�ow. Thus, the overhead
depends mostly on the socket connections that the out-of-place
debugger receives and hence on the number of sni�ers. The number
of sni�ers in these three tasks is small: it ranges from 2 to 7. This
is why S����� has a similar incurred overhead for all three tasks.
In the following, we shall show the scalability of S����� in terms
of number of sni�ers. These results show the high performance
e�ciency of S�����, which leads to retaining the Spark execution
time almost intact. This means one can use S����� in production.
In fact, it incurs 10x less overhead than BigDebug [12] for grep and
wordcount.

7.2 Scalability
We now evaluate the scalability of S����� in terms of data�ow and
cluster size.
Increasing data�ow size. For this experiment, we composed
synthetic Spark jobs with varying number of operators, from 2
to 33, and instrumented them with one sni�er per operator pair
connection. We considered the Wikipedia-abstracts dataset with
a size of 10 GB. Figure 3(a) shows the results. As we noted earlier,
the overhead depends on the number of sni�ers instrumented in

the data�ow. We observe how the overhead incurred by S�����
increases slightly as the number of sni�ers increases. This is because
the out-of-the place debugger has to deal with more connected
sni�ers. Still, we observe that S����� scales gracefully to large
data�ows. For instance, for a data�ow of 33 operators (i. e., 32
sni�ers), which is already a relatively large data�ow in practice,
the overhead is only 8%.
Increasing number of compute nodes. The goal of this exper-
iment is to determine if S����� allows Spark to retain its node
scalability. For this experiment, we used the grep task with an input
dataset size of 10 GB and varied the number of compute nodes.
Figure 3(b) illustrates the results. We observe that S����� incurs
an almost constant overhead: it ranges from 5% to 6%. This minor
di�erence is mainly due to the cluster variance.

Therefore, the above results allow us to conclude that S�����
scales gracefully with the data�ow size and along with Spark for
increasingly larger clusters.

7.3 Responsiveness
We end our evaluation with a set of experiments to evaluate how re-
sponsive S����� is to system events (e. g., alerts and crashes) as well
as user instructions (e. g., system pauses and tuple re-injections).
For this, we consider two debugging scenarios for the join task on
100GB: crash culprit and online debugging.
Crash culprit. Recall a crash culprit is a tuple that causes the
data�ow to fail. We constructed this scenario by inserting a varying
number of tuples with null values into the input dataset, which
causes the join task to fail. S����� catches such exceptions and
sends them to the out-of-place debugger for user inspection (system-
event). The user inspects and �xes the failing tuple (tuple-repair).
Then, she re-inserts the �xed tuple into the main data�ow (user-
instruction). We report the average times only for the system-event
and user-instruction, because the tuple-repair time depends on
several external factors.

Figure 4(a) shows the results of this experiment. The x-axis
shows the total number of system events and, thus, user interac-
tions (i. e., the number of crash culprits). We observe that S�����
ensures an immediate response to system events as well as to user
instructions. From the moment a crash occurs, in the worst case
(when having 10 failing tuples), it will take (i) 16.7 ms to send the
crash culprit (the failing tuple with its metadata) to the user for

tag(f:tuple => tuple)
DebugTuple <tags, <tuple>>

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A.�iané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

Spark

5%
5%

5%

6%

SNOOPY overhead

�1

(a) Grep

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

5%

7%

7%
7%

SNOOPY overheadSpark

�1

(b) WordCount

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

Spark

5%
6%

5%
7%

SNOOPY overhead

�1

(c) Join

Figure 2: Overhead when debugging Spark jobs with S�����.

Ru
nt

im
e

(s
)

0

25

50

75

100

Number of sniffers
0 1 2 4 8 16 32

Spark

5% 6% 6% 8% 7% 8%

SNOOPY overhead

�1

(a) Data�ow size

Ru
nt

im
e

(s
)

0

17.5

35

52.5

70

Number of nodes
2 4 8 16 30

Spark

5%

6%

6% 5% 5%

SNOOPY overhead

�1

(b) Cluster size

Figure 3: S����� scalability.

and operator identi�ers). We measure the runtime of a task running
on Spark without any debugging (Spark) and the runtime of the
task with debugging. We then report the di�erence (overhead).

Figure 2 illustrates the results of this set of experiments. Overall,
we observe that S����� incurs a very low overhead of only 5-7%
regardless of the task or dataset size. This is because the out-of-
place debugger absorbs most of the overhead. Recall that the actual
debugging, e. g., �xing or formattingmalformed tuples, is done apart
from the cluster running the main data�ow. Thus, the overhead
depends mostly on the socket connections that the out-of-place
debugger receives and hence on the number of sni�ers. The number
of sni�ers in these three tasks is small: it ranges from 2 to 7. This
is why S����� has a similar incurred overhead for all three tasks.
In the following, we shall show the scalability of S����� in terms
of number of sni�ers. These results show the high performance
e�ciency of S�����, which leads to retaining the Spark execution
time almost intact. This means one can use S����� in production.
In fact, it incurs 10x less overhead than BigDebug [12] for grep and
wordcount.

7.2 Scalability
We now evaluate the scalability of S����� in terms of data�ow and
cluster size.
Increasing data�ow size. For this experiment, we composed
synthetic Spark jobs with varying number of operators, from 2
to 33, and instrumented them with one sni�er per operator pair
connection. We considered the Wikipedia-abstracts dataset with
a size of 10 GB. Figure 3(a) shows the results. As we noted earlier,
the overhead depends on the number of sni�ers instrumented in

the data�ow. We observe how the overhead incurred by S�����
increases slightly as the number of sni�ers increases. This is because
the out-of-the place debugger has to deal with more connected
sni�ers. Still, we observe that S����� scales gracefully to large
data�ows. For instance, for a data�ow of 33 operators (i. e., 32
sni�ers), which is already a relatively large data�ow in practice,
the overhead is only 8%.
Increasing number of compute nodes. The goal of this exper-
iment is to determine if S����� allows Spark to retain its node
scalability. For this experiment, we used the grep task with an input
dataset size of 10 GB and varied the number of compute nodes.
Figure 3(b) illustrates the results. We observe that S����� incurs
an almost constant overhead: it ranges from 5% to 6%. This minor
di�erence is mainly due to the cluster variance.

Therefore, the above results allow us to conclude that S�����
scales gracefully with the data�ow size and along with Spark for
increasingly larger clusters.

7.3 Responsiveness
We end our evaluation with a set of experiments to evaluate how re-
sponsive S����� is to system events (e. g., alerts and crashes) as well
as user instructions (e. g., system pauses and tuple re-injections).
For this, we consider two debugging scenarios for the join task on
100GB: crash culprit and online debugging.
Crash culprit. Recall a crash culprit is a tuple that causes the
data�ow to fail. We constructed this scenario by inserting a varying
number of tuples with null values into the input dataset, which
causes the join task to fail. S����� catches such exceptions and
sends them to the out-of-place debugger for user inspection (system-
event). The user inspects and �xes the failing tuple (tuple-repair).
Then, she re-inserts the �xed tuple into the main data�ow (user-
instruction). We report the average times only for the system-event
and user-instruction, because the tuple-repair time depends on
several external factors.

Figure 4(a) shows the results of this experiment. The x-axis
shows the total number of system events and, thus, user interac-
tions (i. e., the number of crash culprits). We observe that S�����
ensures an immediate response to system events as well as to user
instructions. From the moment a crash occurs, in the worst case
(when having 10 failing tuples), it will take (i) 16.7 ms to send the
crash culprit (the failing tuple with its metadata) to the user for

SoCC ’19, November 20-23, Santa Cruz, CA B. Contreras-Rojas, J.-A.�iané-Ruiz, Z. Kaoudi, and S. Thirumuruganathan.

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

Spark

5%
5%

5%

6%

SNOOPY overhead

�1

(a) Grep

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

5%

7%

7%
7%

SNOOPY overheadSpark

�1

(b) WordCount

Ru
nt

im
e

(s
)

1

10

100

1000

10000

Dataset size
0 1GB 10GB 100GB 1TB

Spark

5%
6%

5%
7%

SNOOPY overhead

�1

(c) Join

Figure 2: Overhead when debugging Spark jobs with S�����.
Ru

nt
im

e
(s

)

0

25

50

75

100

Number of sniffers
0 1 2 4 8 16 32

Spark

5% 6% 6% 8% 7% 8%

SNOOPY overhead

�1

(a) Data�ow size
Ru

nt
im

e
(s

)

0

17.5

35

52.5

70

Number of nodes
2 4 8 16 30

Spark

5%

6%

6% 5% 5%

SNOOPY overhead

�1

(b) Cluster size

Figure 3: S����� scalability.

and operator identi�ers). We measure the runtime of a task running
on Spark without any debugging (Spark) and the runtime of the
task with debugging. We then report the di�erence (overhead).

Figure 2 illustrates the results of this set of experiments. Overall,
we observe that S����� incurs a very low overhead of only 5-7%
regardless of the task or dataset size. This is because the out-of-
place debugger absorbs most of the overhead. Recall that the actual
debugging, e. g., �xing or formattingmalformed tuples, is done apart
from the cluster running the main data�ow. Thus, the overhead
depends mostly on the socket connections that the out-of-place
debugger receives and hence on the number of sni�ers. The number
of sni�ers in these three tasks is small: it ranges from 2 to 7. This
is why S����� has a similar incurred overhead for all three tasks.
In the following, we shall show the scalability of S����� in terms
of number of sni�ers. These results show the high performance
e�ciency of S�����, which leads to retaining the Spark execution
time almost intact. This means one can use S����� in production.
In fact, it incurs 10x less overhead than BigDebug [12] for grep and
wordcount.

7.2 Scalability
We now evaluate the scalability of S����� in terms of data�ow and
cluster size.
Increasing data�ow size. For this experiment, we composed
synthetic Spark jobs with varying number of operators, from 2
to 33, and instrumented them with one sni�er per operator pair
connection. We considered the Wikipedia-abstracts dataset with
a size of 10 GB. Figure 3(a) shows the results. As we noted earlier,
the overhead depends on the number of sni�ers instrumented in

the data�ow. We observe how the overhead incurred by S�����
increases slightly as the number of sni�ers increases. This is because
the out-of-the place debugger has to deal with more connected
sni�ers. Still, we observe that S����� scales gracefully to large
data�ows. For instance, for a data�ow of 33 operators (i. e., 32
sni�ers), which is already a relatively large data�ow in practice,
the overhead is only 8%.
Increasing number of compute nodes. The goal of this exper-
iment is to determine if S����� allows Spark to retain its node
scalability. For this experiment, we used the grep task with an input
dataset size of 10 GB and varied the number of compute nodes.
Figure 3(b) illustrates the results. We observe that S����� incurs
an almost constant overhead: it ranges from 5% to 6%. This minor
di�erence is mainly due to the cluster variance.

Therefore, the above results allow us to conclude that S�����
scales gracefully with the data�ow size and along with Spark for
increasingly larger clusters.

7.3 Responsiveness
We end our evaluation with a set of experiments to evaluate how re-
sponsive S����� is to system events (e. g., alerts and crashes) as well
as user instructions (e. g., system pauses and tuple re-injections).
For this, we consider two debugging scenarios for the join task on
100GB: crash culprit and online debugging.
Crash culprit. Recall a crash culprit is a tuple that causes the
data�ow to fail. We constructed this scenario by inserting a varying
number of tuples with null values into the input dataset, which
causes the join task to fail. S����� catches such exceptions and
sends them to the out-of-place debugger for user inspection (system-
event). The user inspects and �xes the failing tuple (tuple-repair).
Then, she re-inserts the �xed tuple into the main data�ow (user-
instruction). We report the average times only for the system-event
and user-instruction, because the tuple-repair time depends on
several external factors.

Figure 4(a) shows the results of this experiment. The x-axis
shows the total number of system events and, thus, user interac-
tions (i. e., the number of crash culprits). We observe that S�����
ensures an immediate response to system events as well as to user
instructions. From the moment a crash occurs, in the worst case
(when having 10 failing tuples), it will take (i) 16.7 ms to send the
crash culprit (the failing tuple with its metadata) to the user for

TagSniff: Data Debugging for All

TagSniff Model

SNOOPY

High  

deb
ugging tim

e

Very Low Overhead

sniff(f:tuple => boolean)

