Narrowing the Gap Between Serverless
and its State with Storage Functions

Tian Zhang, Dong Xie, Feifei Li, Ryan Stutsman

THEU

UNIVERSITY
OF UTAH

Shredder

e A multi-tenant in-memory key-value store.

e Extensible with user-provided storage function.
e 5 M ops/s per machine, ~20 us latency

e [n-runtime data access method, able to access

10s of GB of data per second.

k/v pairs visited (M pairs/s)

800

700 -

600 |-

500

400

300

— Shredder
+—+ Shredder w/o CSA
*—= Remote get/put

200 E
100 |- —

Hi
gh growth of serverless computing

Join 500,000+ CB Insights newsletter readers

8 CB\NS\GHTS
ing Is The Fastest—Growing

September 2,2018
oviders aré getting into the space here and take

This is the first in our three part series on serverless computing. Che
companies t0 watch here.

alook atthe final installment on early-stage
f v in
Cloud Enterprise T Expert Intelligence

ck out how the major cloud pr

Trends

The serverless market is expected to reach §7.7B by

WHERE 1S THIS DATA]
COMING FROM? 2021, up from §1.98 in 201 6.
gtart your free trial today

gerverless is a new type of computing model that allows organizations to manageé

_ need for each distinct action.

only the computing resources they

High growth of serverless computing

ma\\
~intter readers -

THENEWSTACK Ebooks v

Podcasts v Events Newsletter

Architecture v Development +

Operations v

[Survey Shows More than 759 Use or Plan to Use Serverless
in Next 18 Months

_~— No, but
Planning to yse
Serverless architectyre
in the next 18 months

Yes

No, and

not planning to use
Serverless architectuyre
in the next 18 months

©2018 THENEWSTACK

High growth of serverless computing

~tntter readers

S Crrmes_ ars
c I S I 0 N News Products Contact Search
swire

News in Focus Business & Money Science & Tech Lifestyle & Health Policy & Public Interest People & Culture

Global Serverless Architecture

Market to Reach $21.99 Billion by .
2025 at 27.8% CAGR: Allied B Market
Market Research R enarh

Rapid rise of the app development market along with increase in
demand for useful applications for different platforms such as Android
and iOS have boosted the growth of the serverless architecture market

TS e SEIVETIESS architecture? n=g0g
2018 THENEWSTACK

Advantages of serverless computing

e Fine-grained resource provisioning.

e -

=

womaner l l l l

=

. OO0 OO0 Oo0 Oooo
Function/ OO0 OO0 000 Oooo
Serverless oo goo ooo ooo

Advantages of serverless computing

e Fine-grained resource provisioning. e On-demand scaling.
«\ -
Server ,/ \
/
//’/' A \\ \\
e BN
- e
Container
8
(%)
()
J L =
8
. OO0 O0OoOo Ooo ood o
Function/ B
OO0 OOO O0OooO ooo

Serverless o5 oo ooo ooo Time

Problems of serverless computing

e Shipping data to code paradigm.

High latency
A) Data
Bandwidth bound
Serverless Storage
Function Service

Problems of serverless computing

e Shipping data to code paradigm. e User pay for additional idle time.

>
A

High latency Server!ess Storgge
A - Function Service
Data | |
Bandwidth bound I

|

Pt

' ,

Serverless Storage e >!
Function Service b .
: 2 |

ldle time <« _ | >

\\ - |

N |

N\ >|

I

|

|

|

Narrowing the gap

~ 950 s
Network costs between servers A Data

Narrowing the gap

~ 950 s

Network costs between servers A Data
~ 20 ys

Kernel bypass to reduce latency A Data

Narrowing the gap

~ 950 s

Network costs between servers A Data
~ 20 us

Kernel bypass to reduce latency A Data

—————

Push code to data, process isolation cost

—_ e — 4

Narrowing the gap

~ 950 s

Network costs between servers A Data
~ 20 us

Kernel bypass to reduce latency A Data

Push code to data, process isolation cost

—_ e — 4

|
V8 runtime isolation, boundary crossing cost ~31ns i A
|

Shredder design goals

e Programmability - flexibility to implement any custom logic.
e Isolation - functions should be safely isolated.
e High Density and Granularity - should support thousands of tenants.

e Performance - optimize performance as much as possible.

Why JavaScript

e Flexibility of general programming language.
e Easier to implement customized data structures

and logics than SQL.

71

Graph

Functions

—ITTTF =

— T
Streaming
Functions

<] Zlc— ﬁ> Ma%x

Functions

Shredder design

Embedded V8 JavaScript
runtime to isolate functions.
Data access through V8 builtins.

JavaScript

Data store implemented C++
in C++ native code.

Networking, data

management, etc.

V8 engine

V8::Context

V8::Context

V8::Context

Data store

Problem: runtime exit costs add up

e Data access across boundary
from JavaScript to C++.

e Adduptoalot of overhead for V8::Context V8::Context V8::Context
functions accessing lots of data.

JavaScript l l l

V8 engine

Data store NIC

One step further

Direct and safe data access
from serverless functions.
Eliminate boundary crossing.
Leverage V8 JIT compiler.

JavaScript

V8 engine
V8::Context V8::Context V8::Context
/ / /
\ / \ / \ /
\ / \ / AN /
\ / \ / \ /
______ B Suty/Zes Wy At Wi A
Data Data

Data store

NIC

CSA to eliminate boundary crossing

Implement data access builtin in CSA (CodeStubAssembler),
the V8 internal IR.

Eliminating boundary crossing to C++.

Runtime can inline CSA to improve performance.

__ CSA

I N
hh \:\ TF_BUILTIN(HTGet, Hashtable
A / CodeStubAssembler) {

Ve
L7
A

Ly
—+]

LANNAN

Data store and CSA builtin co-design

e CSA builtin and data store implement the same data lookup logic over shared
data.

CSA
ST :3 TF_BUILTIN(HTGet,
. CodeStubAssembiler) { F’
N } 7 ///
S |
C++ =

N Hashtable
UL | 771, db_val_t* ht_get(hashtable_t* ht,
NIC = -) uint32_t key) {
N1/

N~ }
4

Threat Model

V8 contexts ensure fault isolation and no cross-tenant data access
o Data is never shared across tenants

TCB includes store, networking stack, OS, hardware, and V8 runtime

Speculative execution attacks complicate secrecy
o Users could craft speculative gadgets
o Speculative gadgets could transmit restricted state through cache timing side channel
o Landscape of attacks still evolving; unclear if runtime/compiler will be able to resolve them

For now, a shared storage server is only safe with some mutual trust
o Two-level isolation model possible
o Process per-tenant; different functions in different runtimes

Evaluations

e 2 x 2.4 GHz Xeon with total 16 physical cores.
e 64 GB memory.

e Intel X710 10GbE.
e DPDK for kernel bypass.

Reduce data movements over network

Projection, queries the first 4 bytes
of a value.

Pushing projection to Shredder
reduces data movements,
compared to baseline which fetches
each whole value.

Value Size

z 14 T T T T T T

a 12 T -
© 10l *—e Remote get/put I}
= 8 — Shredder

= u i
a 6 |
S 4f :
>

2 3 _
"E 0 1 | 1 1 1 |

__ 16B 32B 64B 128B 256B 512B 1kB 2kB
% I I I v

2 I
U o
£

“(2 -
1]

c il
s

=]
o O

"8 0.0] | 1 1 1]

O 16B 32B 64B 128B 256B 512B 1kB 2kB

Data intensive functions

e Traverse Facebook social graph. e Shredder 60X better performance.
e Access 10s of GB of data per second. e CSA brings 3X performance gain.

@ 2.0 @ 350 800 , l

a w— g 300 | — 3 Shredder 1

© 15} 4o B Shredder w/o CSA 700 k-

= ¥ ggg (| |{== Remote getiput] — Shredder

*é 1.0 ~‘§. 150 L i % 600 - +—+ Shredder w/o CSA i
= - *— Remote get/put

L

o 0.5} {5 100 “ a

3 3 50} . g 900 1

.'s:: 0.0 ._-E 0 —1 ;

_ 1-hop graph queries. 20 2-hop graph queries. % 400 .

0 w o Z. K]

& 25 mm 14 — = 300 -

o 20 - . o 1.5 b Tt =

X X 2

2 15 12 10} Il 3 2001 ; E

Q Q

S 10]

> 2 0.5 . 100 |- &

s °f 12 .

£ 0 £ 0.0 ‘

0 - - ¥
3-hop graph queries. 4-hop graph queries. 1-hop 2-hop 3-hop 4-hop

Compute intensive functions

e Neural network inference functions.

e Shredder at disadvantage for ' = shredder

compute intensive functions. — L
e Performance gain still possible if

reduces enough data movements

to offset inefficiency of JS code.

Throughput (M predictions/s)

Iris dataset Wine dataset

Related works

e Extensible stores:

o Comet: An active distributed key-value store. OSDI 2010.
o Malacology: A Programmable Storage System. EuroSys 17.
o Splinter: Bare-Metal Extensions for Multi-Tenant Low-Latency Storage. OSDI 18.

e Serverless state store:

o Pocket: Elastic ephemeral storage for serverless analytics. OSDI 18.

Conclusion

Gap between functions and persistent states is costly

Moving functions to storage eliminates some overhead

Runtimes lower isolations costs, but boundary crossings still add up
Data-intensive functions benefit from tighter integration of code and data

Key idea: embed storage access methods within runtime
o Both storage server and functions can both access data at low cost

Result: achieves 3X better performance with in-runtime data access.

Thank you!

Backup

Throughput (M ops/s)
ORNWAUNON®Y

N N W
o un O

Nodes traversed
(M nodes/s)
=
o wm

o un

Kernel bypass

) Ky | 1 1 1 |
—— Shredder
+—+ Shredder w/o CSA
*—e Remote get/put
Ll 1 1 + ——9
12 4 8 16 32
LI 1 1 1 1
1 | 1 1 1 1
12 4 8 16 32

Length of list

N
w

N
o

o

Throughput (M ops/s)
w

o

o

N
o

=
w

Nodes traversed
(M nodes/s)
—

o w

o

wm

o

No kernel bypass

—— Shredder
+—+ Shredder w/o CSA
*—e Remote get/put

- 1 Il 2 e — |

12 4 8 16 32

16 32
Length of list

[
N
g =
[o¢]

