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Shredder
● A multi-tenant in-memory key-value store.

● Extensible with user-provided storage function.

● 5 M ops/s per machine, ~20 μs latency

● In-runtime data access method, able to access 

10s of GB of data per second.
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Advantages of serverless computing
● Fine-grained resource provisioning.
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Problems of serverless computing
● Shipping data to code paradigm.
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Narrowing the gap
Dataλ ~ 50 μs

Network costs between servers

Dataλ ~ 20 μs
Kernel bypass to reduce latency

λ~ 31 ns DataV8 runtime isolation, boundary crossing cost

Push code to data, process isolation cost λ > 2 μs
Data



Shredder design goals
● Programmability - flexibility to implement any custom logic.

● Isolation - functions should be safely isolated.

● High Density and Granularity - should support thousands of tenants.

● Performance - optimize performance as much as possible.
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Functions

● Flexibility of general programming language.

● Easier to implement customized data structures 

and logics than SQL.

Why JavaScript



Shredder design
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V8 engine
● Embedded V8 JavaScript 

runtime to isolate functions.
● Data access through V8 builtins.

● Data store implemented 
in C++ native code.

● Networking, data 
management, etc. Data store

JavaScript

C++

NIC



Problem: runtime exit costs add up
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● Data access across boundary 

from JavaScript to C++.
● Add up to a lot of overhead for 

functions accessing lots of data.

Data store

JavaScript

C++

NIC



One step further
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● Direct and safe data access 
from serverless functions.

● Eliminate boundary crossing.
● Leverage V8 JIT compiler.

NIC



CSA to eliminate boundary crossing
● Implement data access builtin in CSA (CodeStubAssembler), 

the V8 internal IR.
● Eliminating boundary crossing to C++.
● Runtime can inline CSA to improve performance.

TF_BUILTIN(HTGet, 
                     CodeStubAssembler) {
    ....
}

CSA

λ
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Data store and CSA builtin co-design
● CSA builtin and data store implement the same data lookup logic over shared 

data.

db_val_t* ht_get(hashtable_t* ht,          
                           uint32_t key) {
    ....
}

TF_BUILTIN(HTGet, 
                     CodeStubAssembler) {
    ....
}

CSA
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Threat Model
● V8 contexts ensure fault isolation and no cross-tenant data access

○ Data is never shared across tenants

● TCB includes store, networking stack, OS, hardware, and V8 runtime

● Speculative execution attacks complicate secrecy
○ Users could craft speculative gadgets
○ Speculative gadgets could transmit restricted state through cache timing side channel
○ Landscape of attacks still evolving; unclear if runtime/compiler will be able to resolve them

● For now, a shared storage server is only safe with some mutual trust
○ Two-level isolation model possible
○ Process per-tenant; different functions in different runtimes



Evaluations
● 2 x 2.4 GHz Xeon with total 16 physical cores. 

● 64 GB memory.

● Intel X710 10GbE.

● DPDK for kernel bypass.



Reduce data movements over network
● Projection, queries the first 4 bytes 

of a value.
● Pushing projection to Shredder 

reduces data movements, 
compared to baseline which fetches 
each whole value.



Data intensive functions
● Traverse Facebook social graph.
● Access 10s of GB of data per second.

● Shredder 60X better performance.
● CSA brings 3X performance gain.



Compute intensive functions
● Neural network inference functions.
● Shredder at disadvantage for 

compute intensive functions.
● Performance gain still possible if 

reduces enough data movements 
to offset inefficiency of JS code.



Related works
● Extensible stores:

○ Comet: An active distributed key-value store. OSDI 2010.

○ Malacology: A Programmable Storage System. EuroSys 17.

○ Splinter: Bare-Metal Extensions for Multi-Tenant Low-Latency Storage. OSDI 18.

● Serverless state store:
○ Pocket: Elastic ephemeral storage for serverless analytics. OSDI 18.



Conclusion
● Gap between functions and persistent states is costly
● Moving functions to storage eliminates some overhead
● Runtimes lower isolations costs, but boundary crossings still add up
● Data-intensive functions benefit from tighter integration of code and data
● Key idea: embed storage access methods within runtime

○ Both storage server and functions can both access data at low cost

● Result: achieves 3X better performance with in-runtime data access.

Thank you!
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