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Shredder

e A multi-tenant in-memory key-value store.

e Extensible with user-provided storage function.
e 5 M ops/s per machine, ~20 us latency

e [n-runtime data access method, able to access

10s of GB of data per second.
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High growth of serverless computing

ma\\
~intter readers -

THENEWSTACK Ebooks v

Podcasts v Events Newsletter

Architecture v Development +

Operations v

[ Survey Shows More than 759 Use or Plan to Use Serverless
in Next 18 Months

_~— No, but
Planning to yse
Serverless architectyre
in the next 18 months

Yes

No, and

not planning to use
Serverless architectuyre
in the next 18 months

©2018 THENEWSTACK




High growth of serverless computing
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Advantages of serverless computing

e Fine-grained resource provisioning.
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Advantages of serverless computing

e Fine-grained resource provisioning. e On-demand scaling.
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Problems of serverless computing

e Shipping data to code paradigm.
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Problems of serverless computing

e Shipping data to code paradigm. e User pay for additional idle time.
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Narrowing the gap
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Narrowing the gap
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Shredder design goals

e Programmability - flexibility to implement any custom logic.
e Isolation - functions should be safely isolated.
e High Density and Granularity - should support thousands of tenants.

e Performance - optimize performance as much as possible.



Why JavaScript

e Flexibility of general programming language.
e Easier to implement customized data structures

and logics than SQL.

71

Graph

Functions

—ITTTF =

— T
Streaming
Functions

<] Zlc— ﬁ> Ma%x

Functions




Shredder design

Embedded V8 JavaScript
runtime to isolate functions.
Data access through V8 builtins.

JavaScript

Data store implemented C++
in C++ native code.

Networking, data

management, etc.

V8 engine

V8::Context

V8::Context

V8::Context

Data store




Problem: runtime exit costs add up

e Data access across boundary
from JavaScript to C++.

e Adduptoalot of overhead for V8::Context V8::Context V8::Context
functions accessing lots of data.
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One step further

Direct and safe data access
from serverless functions.
Eliminate boundary crossing.
Leverage V8 JIT compiler.
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CSA to eliminate boundary crossing

Implement data access builtin in CSA (CodeStubAssembler),
the V8 internal IR.

Eliminating boundary crossing to C++.

Runtime can inline CSA to improve performance.
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Data store and CSA builtin co-design

e CSA builtin and data store implement the same data lookup logic over shared
data.
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Threat Model

V8 contexts ensure fault isolation and no cross-tenant data access
o Data is never shared across tenants

TCB includes store, networking stack, OS, hardware, and V8 runtime

Speculative execution attacks complicate secrecy
o Users could craft speculative gadgets
o Speculative gadgets could transmit restricted state through cache timing side channel
o Landscape of attacks still evolving; unclear if runtime/compiler will be able to resolve them

For now, a shared storage server is only safe with some mutual trust
o Two-level isolation model possible
o Process per-tenant; different functions in different runtimes



Evaluations

e 2 x 2.4 GHz Xeon with total 16 physical cores.
e 64 GB memory.

e Intel X710 10GbE.
e DPDK for kernel bypass.



Reduce data movements over network

Projection, queries the first 4 bytes
of a value.

Pushing projection to Shredder
reduces data movements,
compared to baseline which fetches
each whole value.
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Data intensive functions

e Traverse Facebook social graph. e Shredder 60X better performance.
e Access 10s of GB of data per second. e CSA brings 3X performance gain.
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Compute intensive functions

e Neural network inference functions.

e Shredder at disadvantage for ' = shredder

compute intensive functions. — L
e Performance gain still possible if

reduces enough data movements

to offset inefficiency of JS code.

Throughput (M predictions/s)

Iris dataset Wine dataset




Related works

e Extensible stores:

o Comet: An active distributed key-value store. OSDI 2010.
o Malacology: A Programmable Storage System. EuroSys 17.
o Splinter: Bare-Metal Extensions for Multi-Tenant Low-Latency Storage. OSDI 18.

e Serverless state store:

o Pocket: Elastic ephemeral storage for serverless analytics. OSDI 18.



Conclusion

Gap between functions and persistent states is costly

Moving functions to storage eliminates some overhead

Runtimes lower isolations costs, but boundary crossings still add up
Data-intensive functions benefit from tighter integration of code and data

Key idea: embed storage access methods within runtime
o Both storage server and functions can both access data at low cost

Result: achieves 3X better performance with in-runtime data access.

Thank you!
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