
Narrowing the Gap Between Serverless
and its State with Storage Functions

Tian Zhang, Dong Xie, Feifei Li, Ryan Stutsman

Shredder
● A multi-tenant in-memory key-value store.

● Extensible with user-provided storage function.

● 5 M ops/s per machine, ~20 μs latency

● In-runtime data access method, able to access

10s of GB of data per second.

High growth of serverless computing

High growth of serverless computing

High growth of serverless computing

Advantages of serverless computing
● Fine-grained resource provisioning.

Server

Container

Function/
Serverless

Advantages of serverless computing
● Fine-grained resource provisioning.

λ
λ

λλ

Server

Container

R
eq

ue
st

s

Time

λ

● On-demand scaling.

Function/
Serverless

Problems of serverless computing
● Shipping data to code paradigm.

Dataλ
Storage
Service

Serverless
Function

High latency

Bandwidth bound

Problems of serverless computing
● Shipping data to code paradigm.

Dataλ
Storage
Service

Serverless
Function

λ
Serverless
Function

Data

Storage
Service

Idle time

● User pay for additional idle time.

High latency

Bandwidth bound

Narrowing the gap
DataλNetwork costs between servers

~ 50 μs

Narrowing the gap
DataλNetwork costs between servers

Dataλ ~ 20 μs
Kernel bypass to reduce latency

~ 50 μs

Narrowing the gap
DataλNetwork costs between servers

Dataλ ~ 20 μs
Kernel bypass to reduce latency

λ > 2 μs
DataPush code to data, process isolation cost

~ 50 μs

Narrowing the gap
Dataλ ~ 50 μs

Network costs between servers

Dataλ ~ 20 μs
Kernel bypass to reduce latency

λ~ 31 ns DataV8 runtime isolation, boundary crossing cost

Push code to data, process isolation cost λ > 2 μs
Data

Shredder design goals
● Programmability - flexibility to implement any custom logic.

● Isolation - functions should be safely isolated.

● High Density and Granularity - should support thousands of tenants.

● Performance - optimize performance as much as possible.

Graph
Functions

Streaming
Functions Matrix

Functions

● Flexibility of general programming language.

● Easier to implement customized data structures

and logics than SQL.

Why JavaScript

Shredder design

λ
V8::Context

λ
V8::Context

λ
V8::Context

Data Data Data

V8 engine
● Embedded V8 JavaScript

runtime to isolate functions.
● Data access through V8 builtins.

● Data store implemented
in C++ native code.

● Networking, data
management, etc. Data store

JavaScript

C++

NIC

Problem: runtime exit costs add up

λ
V8::Context

λ
V8::Context

λ
V8::Context

Data Data Data

V8 engine
● Data access across boundary

from JavaScript to C++.
● Add up to a lot of overhead for

functions accessing lots of data.

Data store

JavaScript

C++

NIC

One step further

λ
V8::Context

λ
V8::Context

λ
V8::Context

Data Data Data

JavaScript

C++

V8 engine

Data store

Data Data Data

● Direct and safe data access
from serverless functions.

● Eliminate boundary crossing.
● Leverage V8 JIT compiler.

NIC

CSA to eliminate boundary crossing
● Implement data access builtin in CSA (CodeStubAssembler),

the V8 internal IR.
● Eliminating boundary crossing to C++.
● Runtime can inline CSA to improve performance.

TF_BUILTIN(HTGet,
 CodeStubAssembler) {

}

CSA

λ
Hashtable

Data store and CSA builtin co-design
● CSA builtin and data store implement the same data lookup logic over shared

data.

db_val_t* ht_get(hashtable_t* ht,
 uint32_t key) {

}

TF_BUILTIN(HTGet,
 CodeStubAssembler) {

}

CSA

C++

NIC

λ

Hashtable

Threat Model
● V8 contexts ensure fault isolation and no cross-tenant data access

○ Data is never shared across tenants

● TCB includes store, networking stack, OS, hardware, and V8 runtime

● Speculative execution attacks complicate secrecy
○ Users could craft speculative gadgets
○ Speculative gadgets could transmit restricted state through cache timing side channel
○ Landscape of attacks still evolving; unclear if runtime/compiler will be able to resolve them

● For now, a shared storage server is only safe with some mutual trust
○ Two-level isolation model possible
○ Process per-tenant; different functions in different runtimes

Evaluations
● 2 x 2.4 GHz Xeon with total 16 physical cores.

● 64 GB memory.

● Intel X710 10GbE.

● DPDK for kernel bypass.

Reduce data movements over network
● Projection, queries the first 4 bytes

of a value.
● Pushing projection to Shredder

reduces data movements,
compared to baseline which fetches
each whole value.

Data intensive functions
● Traverse Facebook social graph.
● Access 10s of GB of data per second.

● Shredder 60X better performance.
● CSA brings 3X performance gain.

Compute intensive functions
● Neural network inference functions.
● Shredder at disadvantage for

compute intensive functions.
● Performance gain still possible if

reduces enough data movements
to offset inefficiency of JS code.

Related works
● Extensible stores:

○ Comet: An active distributed key-value store. OSDI 2010.

○ Malacology: A Programmable Storage System. EuroSys 17.

○ Splinter: Bare-Metal Extensions for Multi-Tenant Low-Latency Storage. OSDI 18.

● Serverless state store:
○ Pocket: Elastic ephemeral storage for serverless analytics. OSDI 18.

Conclusion
● Gap between functions and persistent states is costly
● Moving functions to storage eliminates some overhead
● Runtimes lower isolations costs, but boundary crossings still add up
● Data-intensive functions benefit from tighter integration of code and data
● Key idea: embed storage access methods within runtime

○ Both storage server and functions can both access data at low cost

● Result: achieves 3X better performance with in-runtime data access.

Thank you!

Backup

Kernel bypass No kernel bypass

