
Cirrus:
A Serverless Framework for 
End-to-end ML Workflows
Joao Carreira, Pedro Fonseca, Alexey Tumanov,

Andrew Zhang, Randy Katz



Machine Learning



End-to-end ML workflows
● Modern end-to-end ML workflows are complex



End-to-end ML workflows
● Modern end-to-end ML workflows are complex

● ML workflows consist of 3 heterogeneous stages



End-to-end ML workflows
● Modern end-to-end ML workflows are complex

● ML workflows consist of 3 heterogeneous stages

Dataset 
Preprocessing



End-to-end ML workflows
● Modern end-to-end ML workflows are complex

● ML workflows consist of 3 heterogeneous stages

Dataset 
Preprocessing

Model Training



End-to-end ML workflows
● Modern end-to-end ML workflows are complex

● ML workflows consist of 3 heterogeneous stages

Dataset 
Preprocessing

Model Training Hyperparameter 
Tuning



End-to-end ML workflows
● Modern end-to-end ML workflows are complex

● ML workflows consist of 3 heterogeneous stages

ML workflows are interactive and iterative 

Dataset 
Preprocessing

Model Training Hyperparameter 
Tuning



Provisioning ML workflows
Provisioning ML workflows is challenging

● Complex infrastructure management detracts from ML work
● Resource waste due to overprovisioning of resources

Hard to accurately estimate resource demands of each stage

Data scientists have limited systems expertise



Serverless computing
Output

Input

Code

AWS S3



Serverless computing
Output

Input

Code



Fine-grained
resources

Fine-grained billing

High elasticity

Automatic resource 
configuration / provisioning 

/ maintenance

Serverless computing benefits
Tight provisioning of 

resources
Simplifying infrastructure

management



Challenges of serverless

Small local memory
and storage

Short-lived and
unpredictable launch times

Low bandwidth and
no P2P communication

Lack of fast
shared storage

Limited lambda 
package size



Existing approaches
Serverless Frameworks Machine Learning Frameworks

Short-lived and unpredictable
launch times



Existing approaches
Serverless Frameworks Machine Learning Frameworks

PyWren

Short-lived and unpredictable
launch times

Limit. Pkg
size

Download dependencies 
from S3

High-latency communication 
through S3No fast

storage

StragglersUnpred.
launch



Existing approaches
Serverless Frameworks Machine Learning Frameworks

PyWren

Short-lived and unpredictable
launch times

Limit. Pkg
size

Download dependencies 
from S3

High-latency communication 
through S3No fast

storage

StragglersUnpred.
launch

Small
mem.

Unable to launch runtimes 
in lambdas

No ring/tree reduces
No driver-to-worker comm.

Precludes MPIUnpred.
launch

No P2P
comm.



Cirrus: a framework for 
serverless end-to-end 

ML workflows



Robust handling of lambda 
termination

Ultra-lightweight runtime + 
data prefetching

Limited pkg
size

High-perf. data store 
(parameter-server and KV)

1）Addressing serverless challenges

No fast storage

Low memory

Limited package size

No P2P communication

Short lifetimes and
unpredictable launch

Cirrus: design principles



Per-stage fine-grained 
variable agile scalability

Cirrus: design principles

Limited pkg
size

Tight provisioning of 
resources

Simplifying infrastructure
management

High-level API supports 
end-to-end ML

2）Achieving benefits for end-to-end ML



Cirrus architecture (client side)
Dashboard

Python API

Client frontend

Preproc. Training Tuning

Create/Stop Task

Client backend
Task

Scheduler
Lambda
Manager

Client side
(stateful)

Data scientist



Cirrus Dashboard



Cirrus Dashboard



Cirrus Dashboard



Cirrus Dashboard



Server side
(stateless)

Cirrus runtime
Data Iterator API

Minibatch Buffer

Sparse LR Mat. Fact. LDA

Data store client API

put
(gradient)

get
(model)Data store

PS API Key-value API

Models
Key-values

SGD Adagrad

Momentum

Cirrus architecture (server side)

put/get 
key



Cirrus evaluation
1. Cirrus provides benefits by specializing both for serverless and 

end-to-end ML

2. We show that Cirrus outperforms a state-of-the-art serverless 
system: PyWren



Evaluation setup
1. Deployment: AWS Lambdas (3GB of mem.)

2. Benchmark: async. distributed SGD Sparse Logistic Regression task 

3. Dataset: Criteo Dataset (a dataset of display ads)

4. PyWren:

a. Baseline: iterative synchronous SGD training using AWS S3 to 

store gradients and model

b. + 3 incremental optimizations

5. Cirrus: 2 modes (with/without prefetching)



Cirrus outperforms vanilla serverless
Synchronous SGD 
training suffers from 
stragglers

Test
Loss



● Multiple SGD iterations on 
each lambda invocation

● Asynchronous SGD

Test
Loss

Cirrus outperforms vanilla serverless



Sparse gradients and 
training data prefetchingTest

Loss

Cirrus outperforms vanilla serverless



Replace AWS S3 with 
high-performance store 
(Redis)

Test
Loss +700x updates/sec

Cirrus outperforms vanilla serverless



Cirrus without training data 
prefetching

Test
Loss

10x 
faster

Cirrus outperforms vanilla serverless



Cirrus with training data 
prefetching

Test
Loss

10x 
faster

10x 
faster

Cirrus outperforms vanilla serverless



Conclusion
1. End-to-end ML workflows:

a. time-consuming infrastructure management
b. resource overprovisioning

2. Cirrus -- serverless end-to-end ML framework:
a. simplify deployment of ML workflows
b. per-stage provisioning of resources

3. Cirrus outperforms existing serverless solutions by specializing for 
serverless and ML



Thank you!

github.com/ucbrise/cirrus @jccarreira

https://github.com/ucbrise/cirrus

