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Why Use Cloud Sottware?

Management built-in: much more value than the software
bits alone (security, availability, etc)

@ Elasticity: pay-as-you-go, scale on demand

@ Better features released faster
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Differences in Building Cloud Software

+ Release cycle: send to users faster, get feedback faster

+ Only need to maintain 2 software versions (current & next),
in fewer configurations than you’d have on-prem

— Upgrading without regressions: very hard, but critical for users
to trust your cloud (on-prem apps don’t need this)
= Includes API, semantics, and performance regressions
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Differences in Building Cloud Software

— Building a multitenant service: significant scaling, security and
performance isolation work that you won’t need on-prem
(customers install separate instances)

— Operating the service: security, availability, monitoring, etc
(but customers would have to do it themselves on-prem)

+ Monitoring: see usage live for ops & product analytics

Many of these challenges aren’t studied in research
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About Databricks

Founded in 2013 by the Apache Spark team at UC Berkeley

Data and ML platform on AWS and Azure for >5000 customers

= Millions of VMs launched/day, processing exabytes of data
= 100,000s of users

1000 employees, 200 engineers, >$200M ARR
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Our Specific Challenges

All the usual challenges of SaaS:
= Availability, security, multitenancy, updates, etc

Plus, the workloads themselves are large-scale!
= One user job could easily overload control services
= Millions of VMs = many weird failures
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Four Lessons

What goes wrong in cloud systems?

Testing for scalability & stability

Developing control planes

OIOIONC

Evolving big data systems for the cloud
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What Goes Wrong in the Cloud?

Academic research studies many kinds of failures:
= Software bugs, network config, crash failures, etc

These matter, but other problems often have larger impact:
= Scaling and resource limits
= Workload isolation
» Updates & regressions
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Causes of Significant Outages

Other

Scaling problem
in our services
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Scaling problem in
underlying cloud services
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user isolation
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Some Issues We Experienced

Cloud networks: limits, partitions, slow DHCP, hung connections
Automated apps creating large load

Very large requests, results, etc

Slow VM launches/shutdowns, lack of VM capacity

Data corruption writing to cloud storage
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Example Outage: Aborted Jobs
X,

) ) Jobs
Jobs Service launches & tracks jobs on clusters —> %’ %
Cloud %

Network  cystomer
Clusters

1 customer running many jobs/sec on same cluster

Cloud’s network reaches a limit of 1000 connections/VM
between Jobs Service & clusters

= After this limit, new connections hang in state SYN_SENT

Resource usage from hanging connections causes
memory pressure and GC

Health checks to some jobs time out, so we abort them
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Surprisingly Rare Issues

1 cloud-wide VM restart on AWS (Xen patch)
1 misreported security scan on customer VM
1 significant S3 outage

1 kernel bug (hung TCP connections due to SACK fix)
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L essons

Cloud services must handle load that varies on many dimensions,
and rely on other services with varying limits & failure modes

» Problems likely to get worse in a “cloud service economy”
End-to-end issues remain hard to prevent

The usual factors of MTTR, monitoring, testing, etc help
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Testing for Scalability & Stability

Software correctness is a Boolean property: does your software
give the right output on a given input?

Scalability and stability are a matter of degree
= What load will your system fail at? (any system with limited resources will)
= What failure behavior will you have? (crash all clients, drop some, etc)
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Example Scalability Problems
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Notebook
Service

AAAAAA &%

Workers

Large result: can crash browser,
notebook service, driver or Spark

Large record in file
Large # of tasks
Code that freezes a worker

+ All these affect other users!



Databricks Stress Test Infrastructure

1. ldentify dimensions for a system to scale in (e.g. # of users, number
of output rows, size of each output row, etc)

2. Grow load in each dimension until a failure occurs

3. Record failure type and impact on system
= Error message, timeout, wrong result?
=  Areother clients affected?
=  Does the system auto-recover? How fast?

4, Compare over time and on changes
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Example Qutput

Suite

ScalaClusterSuite
| ScalaClusterSuite
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ScalaClusterSuite
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ScalaDriverSuite
ScalaDriverSuite
ScalaDriverSuite
ScalaDriverSuite
ScalaDriverSuite
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ScalaDriverSuite
SQLClusterSuite
SQLClusterSuite
SQLClusterSuite
SQLClusterSuite
SQLClusterSuite
SQLClusterSuite
SQLClusterSuite

Test

big broadcast

big tasks

caching large objects
caching small objects
crashing executors
crashing tasks

display large rows

lots of shuffle tasks

lots of tasks

popular key in groupBy
allocate big arrays
allocate small arrays
infinite loop

no such method error

print a lot

system exit

thread sleep

broadcast join

broadcast join on cached dat:
count distinct

count distinct with common ki
self join

self join on cached data
self join with common keys
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Developing Control Planes

Cloud software consists of interacting, independently updated
services, many of which call other services

What should be the programming model for this software?
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Examples

Cluster manager service:
= API: requests to launch, scale and shut down clusters
= Behavior: request VMs, set up clusters, reuse VMs in pools
= State: requests, running VMs, etc

Jobs service:

= API: scheduled or API-triggered jobs to execute
= Behavior: acquire a cluster, run job, monitor state, retry
= State: jobs to be run, what’s currently active, whereis it, etc
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Examples

Cloud VM
Service

)

IAM
Service

|

"Cluster manager service:
= API: requests to launch, scale and shut down clusters

-

= Behavior: request VMs, set up clusters, reuse VMs in pools

= State: requests, running VMs, etc

/

=

" Jobs service:
= API: scheduled or API-triggered jobs to execute

= Behavior: acquire a cluster, run job, monitor state, retry
= State: jobs to be run, what’s currently active, whereis it, etc

)

\[ Usage |

Service
y,

h Notebook
Service )
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Control Plane Infrastructure

Our Platform Team develops a service framework that handles:
= Deployment: AWS, Azure, local, special environments
» Storage: databases, schema updates, etc
= Security tokens & roles

= Monitoring Our service stack:
= APl routing & limiting
) #Scal
= Feature flagging kubgtes #Scala Jﬁt

O & s

Prometheus enVOy databricks
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Best Practices

Isolate state: relational DB is usually enough with org sharding
Isolate components that scale differently: allows separate scaling
Manage changes through feature flags: fastest, safest way

Watch key metrics: most outages could be predicted from one of
CPU load, memory load, DB load or thread pool exhaustion

Test pyramid: 70% unit tests, 20% integration, 10% end-to-end
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Fxample: Cluster Manager

Cluster manager vl Cluster manager v2

WY [\U./,/ ]
Cluster CM Master | Usage, billing, etc
P =

i / \\\\\ ‘Delegate’ ‘Delegate’ :;MOL?:;?:;:EP’

Cloud SIS 255 BEE
VM API

VM AP Customer Clusters Customer Clusters
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Challenges in Control Planes

Fine-grained isolation within a service
Non-standard failure modes (e.g. network conn. exhaustion)

Transitioning between architectures
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Fvolving Big Data Systems for the Cloud

MapReduce, Spark, etc were designed for on-premise datacenters

How can we evolve these leverage the benefits of the cloud?

= Availability, elasticity, scale, multitenancy, etc

Two examples from Databricks:
» Delta Lake: ACID on cloud object stores
= Cloudifying Apache Spark
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Delta Lake Motivation

Cloud object stores (S3, Azure blob, etc) are the largest storage
systems on the planet

= Unmatched availability, parallel I/O bandwidth, and cost-efficiency

Open source big data stack was designed for on-prem world
= Filesystem API for storage } Stronger consistency model

= RDBMS for table metadata (Hive metastore)

o Scale & management complexity
= Other distributed systems, e.g. ZooKeeper

How can big data systems fully leverage cloud object stores?
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Example: Atomic Parallel Writes

Spark on HDFS Spark on S3 (Naive)

Input Files Output Partitions Input Files Output Partitions
W part-1 ' /my-output/part-1
I % E/? 4 B part-2 s: E/? 4 B /my-output/part-2

\ \3-\\ \ N N
I7> ) \= part-3 I/ N \ [ /my-output/part-3
AAAAAA part-4 /my-output/part-4
Spofl’g _ Spa ‘AZ =8 . ,
/tmp-job-1 Full object names
Atomic 1 (no cheap rename)
Rename
/my-output =K /-DONE

Real cases are harder (e.g. appending to a table)
@databricks



Delta Lake Design A

DELTA LAKE

1. Track metadata that says which objects are part of a dataset

2. Store this metadata itself in a cloud object store
= Write-ahead log in S3, compressed using Apache Parquet

Input Files Output Partitions
P P Before Delta Lake: 50% of Spark support
S g W /myoutput/partX issues were about cloud storage
QA‘E{ ° /’. /my-output/part-Y
——3 b Q:I /my-output/part-Z After: fewer issues, increased perf
/ AAAAAA . /my-output/part-W
Spark’
M
Commit 10x faster metadata
_>- ARk e ops than Hive on S3! https://delta.lo
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Major Benetits of Delta Lake

Once we had transactions over S3, we could build much more:

= UPSERT, DELETE, etc (GDPR) Filter on 2 Fields
= Caching '
= Multidimensional indexing g 08
= Audit logging %’ 06
= Time travel 2 04
= Background optimization 0.2
Result: greatly simplified O & @ ;
customers’ data architectures S

N
€databricks P



Other Cloud Features

Scheduler-integrated autoscaling for Apache Spark
Autoscaling local storage volumes

User isolation for high-concurrency Spark clusters

= Serverless experience for users inside an org
= Separate library envs, IAM roles, performance & fault isolation
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Conclusion

The cloud is eating software by enabling much better products
= Self-managing, elastic, more reliable & scalable

But building cloud products is understudied and hard
= Come see what’s involved in an internship!

Many opportunities, from service fabrics to cloud-native systems

We’re hiring in SF, Amsterdam & Toronto: databricks.com/jobs
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