Lessons from Large-Scale
Cloud Software at Databricks

Matei Zaharia
@matei_zahari .
matel_zanaria ‘databrlcks

Outline

The cloud is eating software, but why?

About Databricks

Challenges, solutions and research questions

g€databricks

Outline

The cloud is eating software, but why?

About Databricks

Challenges, solutions and research questions

€databricks

Traditional Software

Vendor

Customers

gdatabricks

/ \5 12 months

% Dev Team

l 6-12 months
B Release

Cloud Software

% Dev + Ops Team

l 1-2 weeks

&&SUsers
M ee Ops
J U
N\
-’.&.%Users
)88 Ops
q

Why Use Cloud Sottware?

Management built-in: much more value than the software
bits alone (security, availability, etc)

@ Elasticity: pay-as-you-go, scale on demand

@ Better features released faster

g€databricks

Differences in Building Cloud Software

+ Release cycle: send to users faster, get feedback faster

+ Only need to maintain 2 software versions (current & next),
in fewer configurations than you’d have on-prem

— Upgrading without regressions: very hard, but critical for users
to trust your cloud (on-prem apps don’t need this)
= Includes API, semantics, and performance regressions

g€databricks

Differences in Building Cloud Software

— Building a multitenant service: significant scaling, security and
performance isolation work that you won’t need on-prem
(customers install separate instances)

— Operating the service: security, availability, monitoring, etc
(but customers would have to do it themselves on-prem)

+ Monitoring: see usage live for ops & product analytics

Many of these challenges aren’t studied in research

g€databricks

About Databricks

Founded in 2013 by the Apache Spark team at UC Berkeley

Data and ML platform on AWS and Azure for >5000 customers

= Millions of VMs launched/day, processing exabytes of data
= 100,000s of users

1000 employees, 200 engineers, >$200M ARR

€databricks

VMs Managed / Day

2017 2018 2019 €databricks

Some of Our Customers

Financial Services

Finra ¥

BLACKROCK

lllllllllll

Public Sector

L

& \2\ U.S. Citizenship
1@, and Immigration
%) =/ Services
Ve

-AARP
BLACK[SK® p

noblis [erammee

Healthcare & Pharma

REGENERON

HUMAN o
LONGEVITY,
NG e

SANOFI
American
Diabetes
. Association.
A amino

Retail & CPG

-~
RedBull EZZd

ceouon IS

ﬁiDD DOLLAR SHAVE CLUB
Cheag WWstfield
'. I overstock.com’

Media & Entertainment

NBCUniversal
VICOM
((Siriusxm)

G AMES

Mc
£ Graw

BETHESDA Hill
=R Hin

Mzynga & Tivo

[LTVE I'IF!TIDI'I]

Consumer Services

& Expedia
Hotels.com Fipboard

mepovestitl ‘)

OpenTable*

‘Rl;r%n M Medium

glassdoor
$+-$ myfitnesspal

Data & Analytics Services

3> D {\ AUTODESK. @

DOW JONES @
®
ELECTRONICS "‘

Technology

RAI

THOMSON REUTERS re ol | Il I I Adobe
ELSEVIER CISCO “
= edmunds coPro B

Marketing & AdTech Energy & Industrial IoT

SOIAL
CODE

TUNE Loyalty n Quby
@ eveview AIMIA SIEMENS
RADIUS "‘\ ConocJPhiIIips

€&databricks

Some of Our Customers

Financial Services

FII'II"a_’

BLACKROCK

rrrrrrrrrrr

Public Sector

U.S. Citizenship

iy

. 1)

&)

BEN)} and Immigration
\ /f Services
s

AARP
BLACK

noblis

Healthcare & Pharma Media & Entertainment

REGENERON

HUMAN
LONGEVITY,
INC. » B

NBCUniversal

((Siriusxm)

|dentify frau

learning on 30 PB of trade data

Retail & CPG Consumer Services
-~ & Expedia
RedBull EZZxd
—~ Hotels.com Fipboard
S (%) meioeves Bl -]
ﬁfl)[) DOLLAR SHAVE CLUB Blue OpenTable
w ‘ Apron M Medium
Chegg estfield
glassdoor

'. I overstock.com’

3% myfitnesspal

Data & Analytics Services Technology

o D {\ AUTODESK @
DOW JONES
wﬂECTRDNICS '«“

d using machine

Marketing & AdTech Energy & Industrial loT

SODIAL
MediaMath CJODE

TUNE Loyalty Quby
oeyeview AIMINA SIEMENS
RADIUS 9N ConocoPhillips

€databricks

Some of Our Customers

Financial Services

REGENERON

Public Sector

At

&I :
7, 2\ US. Citizenship
(NP \I and Immigration
BN -/I Services

AVp

AARP
BLACK

noblis

Media & Entertainment

Healthcare & Pharma

REGENERON

NBCUniversal

7 At v

Retail & CPG Consumer Services

-~ aExpedia
RedBull EZZx3

R Hotels.com Fipboard
&) mesoves Bl
ﬁ[[)p DOLLAR SHAVE CLUB Bl OpenTable
C— ue _
Cheag Wsthield ‘ Apron B Medium

: glassdoor
'. I overstock.com $+-2 myfitnesspal

GROUPON

Data & Analytics Services

@@ RAI

Correlate 500,000 patients’ records
with their DNA to design therapies

Technology

o D /\ AUTODESK @

IAl

Adobe

NetApp-

H\JUIII T 1A ---

Marketing & AdTech Energy & Industrial loT

SODIAL
MediaMath CJODE

TUNE Loyalty C)Uby
oeyeview AIMINA SIEMENS
RADIUS 9N ConocoPhillips

€databricks

Some of Our Customers

Financial Services Healthcare & Pharma Media & Entertainment ~ Data & Analytics Services Technology
! NBCUniversal
— REGENERON . D A ADTODESK @
HUMAN DOW JONES
LONGEVITY,
BLAC KROCK ? INC. % : :;::_.;:.: AR wIEI_ECTRDNICS "‘
gng’de"U . SANQE! l=ll=1'ul==|-ux Y o QR SR Y

........... Aem&n 5 . .
o Nasdac - Wm Curb abusive behaylor in the
world’s largest online game

G AMES

Public Sector Retail & CPG o T
/_\ USS. Citizenship 6 Expedia SOMDIAL
@/\I ﬂ‘:\[ﬂfz‘i“””"ln Red BU" P MediaMath CJODE —_
s -AARP Hotels.com Fipboard DNV-GL
rowron <z<> cepo <@ | TUNE Loyaly Quby

] DOLLAR SHAVE CLUB OpenTable*
fliop, &5ue

Cheas Wstheld Apron ¥ Medium {5 eveview AIMIA SIEMENS
lassdoor . L
nOblls DiaitalGlobe- overstock.com’ g . RA[)IUS) \m ConocoPhI"I S
g . = 4 meltnesspaI INNERACTIVE

€databricks

Our Product

Data scientists\b

A)
! ﬂ

Data engineers

{i—}+ob|eow/
8 Qlik@
|
¥ L

Business users

>

@databricks

Databricks Service

Interactive
data science

Customer’s Cloud Account

Compute Clusters

Databricks Runtime

Scheduled jobs

N

SQL frontend
ML platform || Data catalog % @ @ %
Cloud Storage
71 Security policies aws
1 > A
K) |~ A zure)
4 \
Built around e @ |fl('
open source: Spr K 1 #5cala A mijiow
DELTA LAKE
~ J

Our Specific Challenges

All the usual challenges of SaaS:
= Availability, security, multitenancy, updates, etc

Plus, the workloads themselves are large-scale!
= One user job could easily overload control services
= Millions of VMs = many weird failures

€databricks

Four Lessons

What goes wrong in cloud systems?

Testing for scalability & stability

Developing control planes

OIOIONC

Evolving big data systems for the cloud

g€databricks

Four Lessons

What goes wrong in cloud systems?

Testing for scalability & stability

Developing control planes

OIOIONC

Evolving big data systems for the cloud

g€databricks

What Goes Wrong in the Cloud?

Academic research studies many kinds of failures:
= Software bugs, network config, crash failures, etc

These matter, but other problems often have larger impact:
= Scaling and resource limits
= Workload isolation
» Updates & regressions

€databricks

Causes of Significant Outages

Other

Scaling problem
in our services

Deployment
misconfiguration

Scaling problem in
underlying cloud services

Insufficient
user isolation

@databricks

Causes of Significant Outages

Other .
Scaling problem

in our services

Deployment

misconfiguration 70% scale

related

Scaling problem in
underlying cloud services

Insufficient
user isolation

gdatabricks

Some Issues We Experienced

Cloud networks: limits, partitions, slow DHCP, hung connections
Automated apps creating large load

Very large requests, results, etc

Slow VM launches/shutdowns, lack of VM capacity

Data corruption writing to cloud storage

€databricks

Example Outage: Aborted Jobs
X,

)) Jobs
Jobs Service launches & tracks jobs on clusters —> %’ %
Cloud %

Network cystomer
Clusters

1 customer running many jobs/sec on same cluster

Cloud’s network reaches a limit of 1000 connections/VM
between Jobs Service & clusters

= After this limit, new connections hang in state SYN_SENT

Resource usage from hanging connections causes
memory pressure and GC

Health checks to some jobs time out, so we abort them

g€databricks

Surprisingly Rare Issues

1 cloud-wide VM restart on AWS (Xen patch)
1 misreported security scan on customer VM
1 significant S3 outage

1 kernel bug (hung TCP connections due to SACK fix)

€databricks

L essons

Cloud services must handle load that varies on many dimensions,
and rely on other services with varying limits & failure modes

» Problems likely to get worse in a “cloud service economy”
End-to-end issues remain hard to prevent

The usual factors of MTTR, monitoring, testing, etc help

€databricks

Four Lessons

What goes wrong in cloud systems?

Testing for scalability & stability

Developing control planes

OIOIONC

Evolving big data systems for the cloud

g€databricks

Testing for Scalability & Stability

Software correctness is a Boolean property: does your software
give the right output on a given input?

Scalability and stability are a matter of degree
= What load will your system fail at? (any system with limited resources will)
= What failure behavior will you have? (crash all clients, drop some, etc)

g€databricks

Example Scalability Problems

(.
- @ -
A

User Browser

e

Driver
App

Other Users

g€databricks

Notebook
Service

AAAAAA &%

Workers

Large result: can crash browser,
notebook service, driver or Spark

Large record in file
Large # of tasks
Code that freezes a worker

+ All these affect other users!

Databricks Stress Test Infrastructure

1. ldentify dimensions for a system to scale in (e.g. # of users, number
of output rows, size of each output row, etc)

2. Grow load in each dimension until a failure occurs

3. Record failure type and impact on system
= Error message, timeout, wrong result?
= Areother clients affected?
= Does the system auto-recover? How fast?

4, Compare over time and on changes

€databricks

Example Qutput

Suite

ScalaClusterSuite
| ScalaClusterSuite
ScalaClusterSuite
ScalaClusterSuite
ScalaClusterSuite
ScalaClusterSuite
ScalaClusterSuite
ScalaClusterSuite
ScalaClusterSuite
ScalaClusterSuite
ScalaDriverSuite
ScalaDriverSuite
ScalaDriverSuite
ScalaDriverSuite
ScalaDriverSuite
ScalaDriverSuite
ScalaDriverSuite
SQLClusterSuite
SQLClusterSuite
SQLClusterSuite
SQLClusterSuite
SQLClusterSuite
SQLClusterSuite
SQLClusterSuite

Test

big broadcast

big tasks

caching large objects
caching small objects
crashing executors
crashing tasks

display large rows

lots of shuffle tasks

lots of tasks

popular key in groupBy
allocate big arrays
allocate small arrays
infinite loop

no such method error

print a lot

system exit

thread sleep

broadcast join

broadcast join on cached dat:
count distinct

count distinct with common ki
self join

self join on cached data
self join with common keys

@databricks

MaxValue State

1000000000 FAILED

1000000000
100000000

1000000000 | §

1000 &

1000 |8
10000000
100000
1000000

Flags Message
at sun.nio.ch.FileCh:
at java.io.ByteArray(

-java.lang.Exoeption:

at Notebook$$anonf
-java.lang.Exoeption:

java.lang.Exception:
at com.databricks.bz

at com.databricks.bz

at com.databricks.bz
at com.databricks.bz

N & NN B B BN = B B 2 0 wHds wowas b B BB ws s

Prev MaxValue Prev State

1000000000 FAILED
1000000000

Prev MaxStep Prev Flags Prev Message MaxStep diff

at sun.nio.ch.FileChan
at java.util.Arrays.copy

0
0
0
0
0
0
0

org.apache.spark.Spark
at org.apache.spark.s

at Notebook$$anonfun
java.lang.Exception: Cc

-LOOOOOOI

at com.databricks.back

N & W H B B BN = WA = WWwahH WwasE BB s s wds s
o O O o o

0
0

Four Lessons

What goes wrong in cloud systems?

Testing for scalability & stability

Developing control planes

OJOIOXC

Evolving big data systems for the cloud

g€databricks

Developing Control Planes

Cloud software consists of interacting, independently updated
services, many of which call other services

What should be the programming model for this software?

€databricks

Examples

Cluster manager service:
= API: requests to launch, scale and shut down clusters
= Behavior: request VMs, set up clusters, reuse VMs in pools
= State: requests, running VMs, etc

Jobs service:

= API: scheduled or API-triggered jobs to execute
= Behavior: acquire a cluster, run job, monitor state, retry
= State: jobs to be run, what’s currently active, whereis it, etc

€databricks

Examples

Cloud VM
Service

)

IAM
Service

|

"Cluster manager service:
= API: requests to launch, scale and shut down clusters

-

= Behavior: request VMs, set up clusters, reuse VMs in pools

= State: requests, running VMs, etc

/

=

" Jobs service:
= API: scheduled or API-triggered jobs to execute

= Behavior: acquire a cluster, run job, monitor state, retry
= State: jobs to be run, what’s currently active, whereis it, etc

)

\[Usage |

Service
y,

h Notebook
Service)

g€databricks

Control Plane Infrastructure

Our Platform Team develops a service framework that handles:
= Deployment: AWS, Azure, local, special environments
» Storage: databases, schema updates, etc
= Security tokens & roles

= Monitoring Our service stack:
= APl routing & limiting
) #Scal
= Feature flagging kubgtes #Scala Jﬁt

O & s

Prometheus enVOy databricks

g€databricks

Best Practices

Isolate state: relational DB is usually enough with org sharding
Isolate components that scale differently: allows separate scaling
Manage changes through feature flags: fastest, safest way

Watch key metrics: most outages could be predicted from one of
CPU load, memory load, DB load or thread pool exhaustion

Test pyramid: 70% unit tests, 20% integration, 10% end-to-end

g€databricks

Fxample: Cluster Manager

Cluster manager vl Cluster manager v2

WY [\U./,/]
Cluster CM Master | Usage, billing, etc
P =

i / \\\\\ ‘Delegate’ ‘Delegate’ :;MOL?:;?:;:EP’

Cloud SIS 255 BEE
VM API

VM AP Customer Clusters Customer Clusters

gdatabricks

Challenges in Control Planes

Fine-grained isolation within a service
Non-standard failure modes (e.g. network conn. exhaustion)

Transitioning between architectures

€databricks

Four Lessons

What goes wrong in cloud systems?

Testing for scalability & stability

Developing control planes

& & ® G

Evolving big data systems for the cloud

g€databricks

Fvolving Big Data Systems for the Cloud

MapReduce, Spark, etc were designed for on-premise datacenters

How can we evolve these leverage the benefits of the cloud?

= Availability, elasticity, scale, multitenancy, etc

Two examples from Databricks:
» Delta Lake: ACID on cloud object stores
= Cloudifying Apache Spark

€databricks

Delta Lake Motivation

Cloud object stores (S3, Azure blob, etc) are the largest storage
systems on the planet

= Unmatched availability, parallel I/O bandwidth, and cost-efficiency

Open source big data stack was designed for on-prem world
= Filesystem API for storage } Stronger consistency model

= RDBMS for table metadata (Hive metastore)

o Scale & management complexity
= Other distributed systems, e.g. ZooKeeper

How can big data systems fully leverage cloud object stores?

g€databricks

Example: Atomic Parallel Writes

Spark on HDFS Spark on S3 (Naive)

Input Files Output Partitions Input Files Output Partitions
W part-1 ' /my-output/part-1
I % E/? 4 B part-2 s: E/? 4 B /my-output/part-2

\ \3-\\ \ N N
I7>) \= part-3 I/ N \ [/my-output/part-3
AAAAAA part-4 /my-output/part-4
Spofl’g _ Spa ‘AZ =8 . ,
/tmp-job-1 Full object names
Atomic 1 (no cheap rename)
Rename
/my-output =K /-DONE

Real cases are harder (e.g. appending to a table)
@databricks

Delta Lake Design A

DELTA LAKE

1. Track metadata that says which objects are part of a dataset

2. Store this metadata itself in a cloud object store
= Write-ahead log in S3, compressed using Apache Parquet

Input Files Output Partitions
P P Before Delta Lake: 50% of Spark support
S g W /myoutput/partX issues were about cloud storage
QA‘E{ ° /’. /my-output/part-Y
——3 b Q:I /my-output/part-Z After: fewer issues, increased perf
/ AAAAAA . /my-output/part-W
Spark’
M
Commit 10x faster metadata
_>- ARk e ops than Hive on S3! https://delta.lo

€databricks

https://d/
http://www.delta.io/

Major Benetits of Delta Lake

Once we had transactions over S3, we could build much more:

= UPSERT, DELETE, etc (GDPR) Filter on 2 Fields
= Caching '
= Multidimensional indexing g 08
= Audit logging %’ 06
= Time travel 2 04
= Background optimization 0.2
Result: greatly simplified O & @ ;
customers’ data architectures S

N
€databricks P

Other Cloud Features

Scheduler-integrated autoscaling for Apache Spark
Autoscaling local storage volumes

User isolation for high-concurrency Spark clusters

= Serverless experience for users inside an org
= Separate library envs, IAM roles, performance & fault isolation

€databricks

Conclusion

The cloud is eating software by enabling much better products
= Self-managing, elastic, more reliable & scalable

But building cloud products is understudied and hard
= Come see what’s involved in an internship!

Many opportunities, from service fabrics to cloud-native systems

We’re hiring in SF, Amsterdam & Toronto: databricks.com/jobs

g€databricks

http://www.databricks.com/careers

