

Lessons from Large-Scale Cloud Software at Databricks

Matei Zaharia

@matei_zaharia

The cloud is eating software, but why?

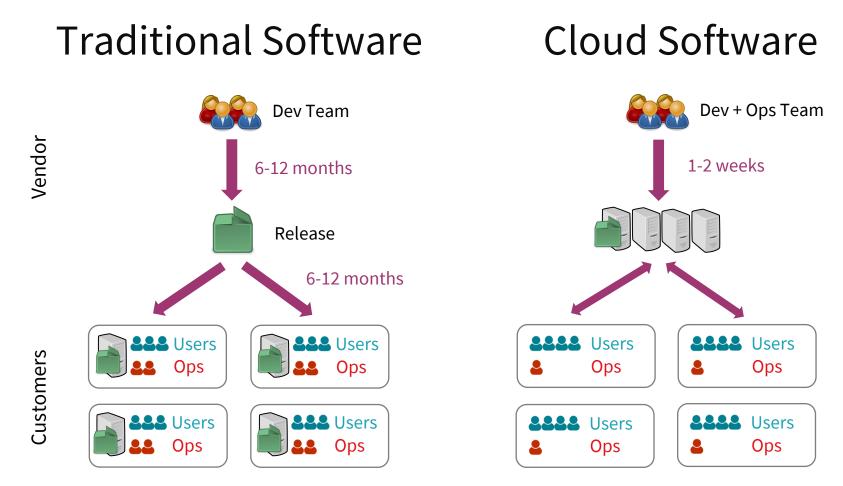
About Databricks

Challenges, solutions and research questions

The cloud is eating software, but why?

About Databricks

Challenges, solutions and research questions



databricks

Why Use Cloud Software?

Management built-in: much more value than the software bits alone (security, availability, etc)

2) Elasticity: pay-as-you-go, scale on demand

3) Better features released faster

Differences in Building Cloud Software

- + Release cycle: send to users faster, get feedback faster
- + Only need to maintain 2 software versions (current & next), in fewer configurations than you'd have on-prem
- Upgrading without regressions: very hard, but critical for users to trust your cloud (on-prem apps don't need this)
 - Includes API, semantics, and performance regressions

Differences in Building Cloud Software

- Building a multitenant service: significant scaling, security and performance isolation work that you won't need on-prem (customers install separate instances)
- Operating the service: security, availability, monitoring, etc
 (but customers would have to do it themselves on-prem)
- + Monitoring: see usage live for ops & product analytics

Many of these challenges aren't studied in research

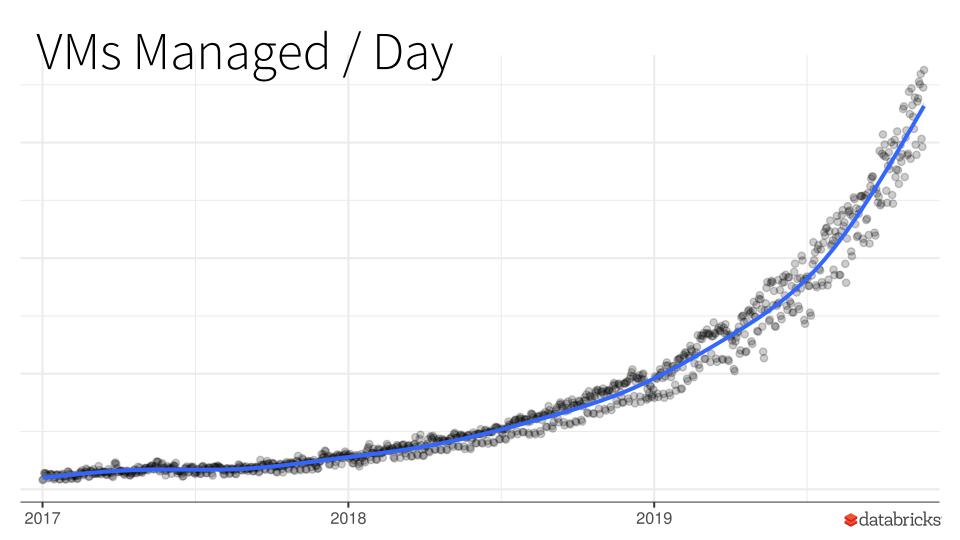
About Databricks

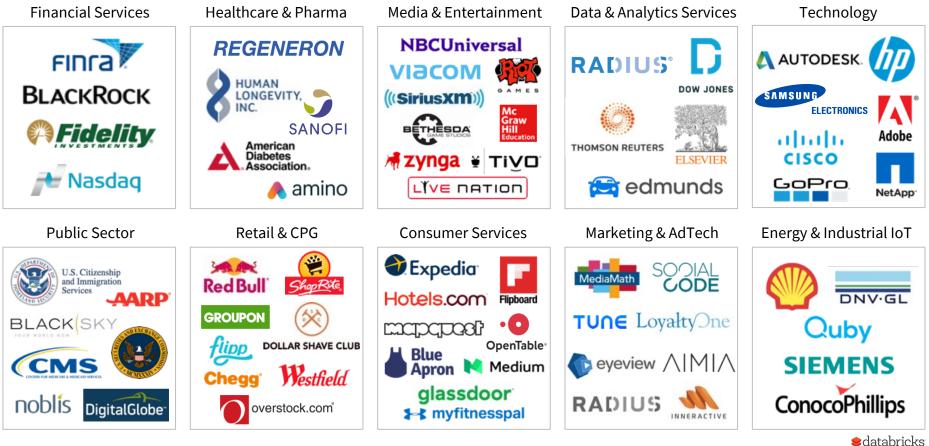
Founded in 2013 by the Apache Spark team at UC Berkeley

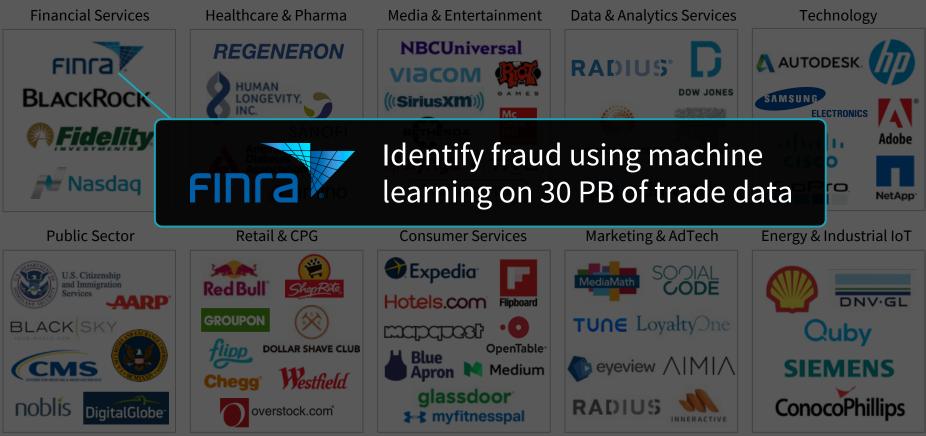
Data and ML platform on AWS and Azure for >5000 customers

- Millions of VMs launched/day, processing exabytes of data
- 100,000s of users

1000 employees, 200 engineers, >\$200M ARR





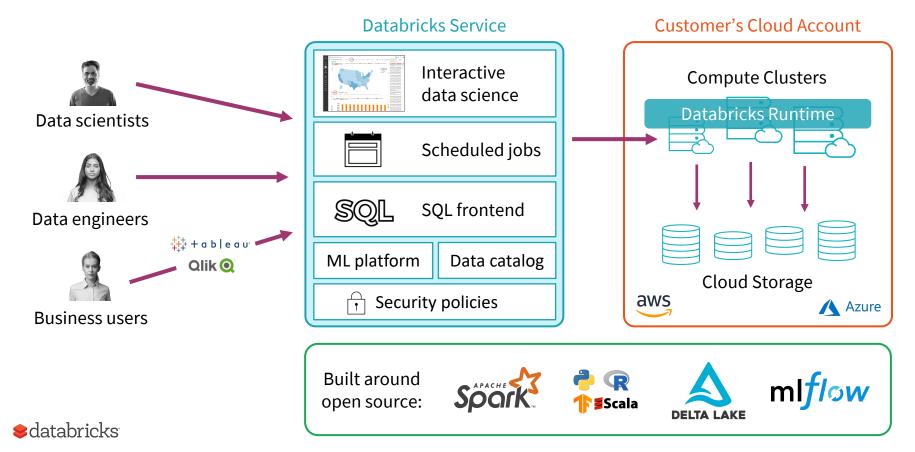


edatabricks

edatabricks

edatabricks

Our Product



Our Specific Challenges

All the usual challenges of SaaS:

Availability, security, multitenancy, updates, etc

Plus, the workloads themselves are large-scale!

- One user job could easily overload control services
- Millions of VMs ⇒ many weird failures

Four Lessons

What goes wrong in cloud systems?

Testing for scalability & stability

Developing control planes

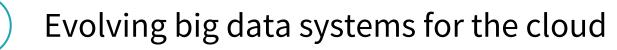
(4)

3

Evolving big data systems for the cloud

Four Lessons

What goes wrong in cloud systems?



3

4

What Goes Wrong in the Cloud?

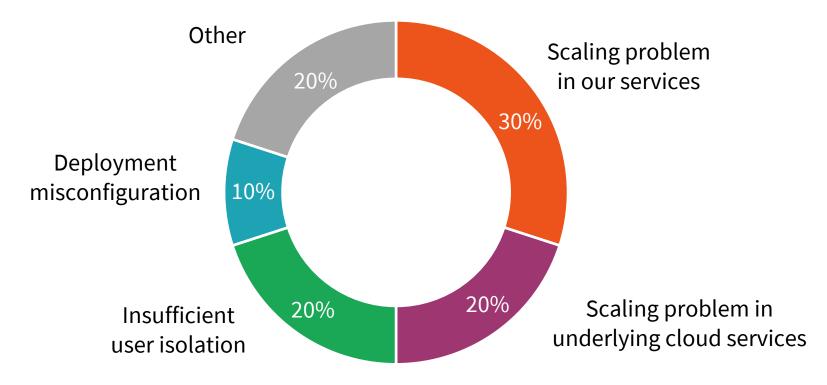
Academic research studies many kinds of failures:

• Software bugs, network config, crash failures, etc

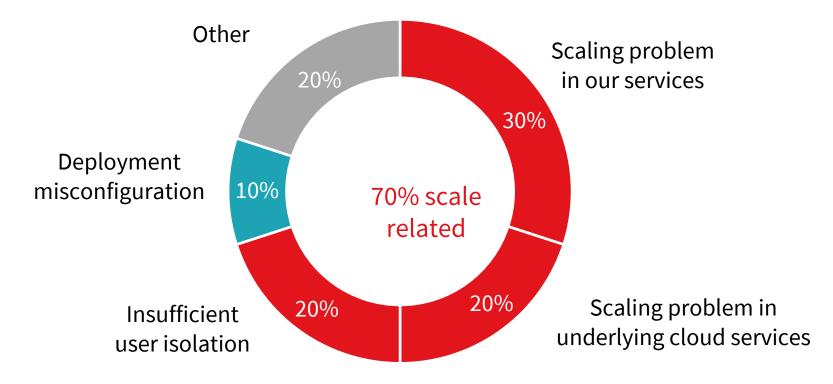
These matter, but other problems often have larger impact:

- Scaling and resource limits
- Workload isolation
- Updates & regressions

Causes of Significant Outages



Causes of Significant Outages



Some Issues We Experienced

Cloud networks: limits, partitions, slow DHCP, hung connections

Automated apps creating large load

Very large requests, results, etc

Slow VM launches/shutdowns, lack of VM capacity

Data corruption writing to cloud storage

Example Outage: Aborted Jobs

Jobs Service launches & tracks jobs on clusters

1 customer running many jobs/sec on same cluster

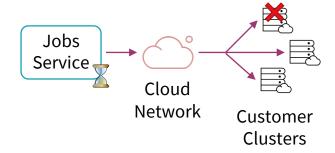
Cloud's network reaches a limit of 1000 connections/VM between Jobs Service & clusters

After this limit, new connections hang in state SYN_SENT

Resource usage from hanging connections causes memory pressure and GC

databricks

Health checks to some jobs time out, so we abort them



Surprisingly Rare Issues

1 cloud-wide VM restart on AWS (Xen patch)

1 misreported security scan on customer VM

1 significant S3 outage

1 kernel bug (hung TCP connections due to SACK fix)

Cloud services must handle load that varies on many dimensions, and rely on other services with varying limits & failure modes

Problems likely to get worse in a "cloud service economy"

End-to-end issues remain hard to prevent

The usual factors of MTTR, monitoring, testing, etc help

Four Lessons

What goes wrong in cloud systems?

Testing for scalability & stability

Developing control planes

Evolving big data systems for the cloud

3

4

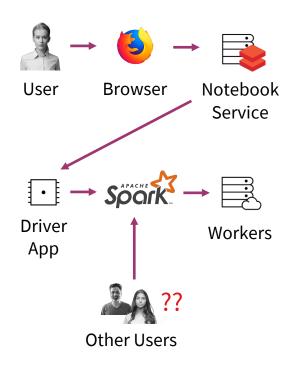
Testing for Scalability & Stability

Software correctness is a Boolean property: does your software give the right output on a given input?

Scalability and stability are a matter of degree

- What load will your system fail at? (any system with limited resources will)
- What failure behavior will you have? (crash all clients, drop some, etc)

Example Scalability Problems



Large result: can crash browser, notebook service, driver or Spark

Large record in file

Large # of tasks

Code that freezes a worker

+ All these affect other users!

Databricks Stress Test Infrastructure

- 1. Identify dimensions for a system to scale in (e.g. # of users, number of output rows, size of each output row, etc)
- 2. Grow load in each dimension until a failure occurs
- 3. Record failure type and impact on system
 - Error message, timeout, wrong result?
 - Are other clients affected?
 - Does the system auto-recover? How fast?
- 4. Compare over time and on changes

Example Output

Suite	Test	MaxValue	State	MaxStep	Flags	Message	Prev MaxValue	Prev State	Prev MaxStep	Prev Flags	Prev Message	MaxStep diff
ScalaClusterSuite	big broadcast	100000000	FAILED	4	4	at sun.nio.ch.FileCh	100000000	FAILED	4		at sun.nio.ch.FileChan	
ScalaClusterSuite	big tasks	100000000	FAILED		4	at java.io.ByteArray	100000000	FAILED	4		at java.util.Arrays.copy	
ScalaClusterSuite	caching large objects	10000000	TIMED_OUT	:	3		10000000	TIMED_OUT	3			
ScalaClusterSuite	caching small objects	100000000	SUCCEEDED		4		100000000	SUCCEEDED	4			
ScalaClusterSuite	crashing executors	1000	SUCCEEDED		4		1000	SUCCEEDED	4			
ScalaClusterSuite	crashing tasks	1000	SUCCEEDED		4		1000	SUCCEEDED	4			
ScalaClusterSuite	display large rows	1000000	TIMED_OUT		4 CB SB LS	java.lang.Exception:	1000000	FAILED	4		org.apache.spark.Spar	
ScalaClusterSuite	lots of shuffle tasks	100000	TIMED_OUT	:	3		1000000	FAILED	4		at org.apache.spark.sc	
ScalaClusterSuite	lots of tasks	1000000	TIMED_OUT	:	3		1000000	TIMED_OUT	3			
ScalaClusterSuite	popular key in groupBy	1000000	TIMED_OUT		4		1000000	TIMED_OUT	4			
ScalaDriverSuite	allocate big arrays	100	TIMED_OUT	:	3 CB		100	TIMED_OUT	3	СВ		
ScalaDriverSuite	allocate small arrays	100000	FAILED	:	3	at Notebook\$\$anonf	100000	FAILED	3		at Notebook\$\$anonfun	
ScalaDriverSuite	infinite loop	0	TIMED_OUT		1 CB SB LS	java.lang.Exception:	0	TIMED_OUT	1	CB SB LS	java.lang.Exception: Co	
ScalaDriverSuite	no such method error	0	SUCCEEDED		4		0	SUCCEEDED	4			
ScalaDriverSuite	print a lot	100000000	TIMED_OUT		4 CB SB LS	java.lang.Exception:	10000000	TIMED_OUT	3			
ScalaDriverSuite	system exit	0	FAILED		1	at com.databricks.ba	0	FAILED	1		at com.databricks.back	
ScalaDriverSuite	thread sleep	100	TIMED_OUT	:	2		100	TIMED_OUT	2			
SQLClusterSuite	broadcast join	100000000	FAILED		4	at com.databricks.ba	100000000	SUCCEEDED	4			
SQLClusterSuite	broadcast join on cached data	100000000	SUCCEEDED		4		100000000	SUCCEEDED	4			
SQLClusterSuite	count distinct	100000000	TIMED_OUT		4		100000000	TIMED_OUT	4			
SQLClusterSuite	count distinct with common keep	1000000	FAILED	:	2	at com.databricks.ba	100000000	SUCCEEDED	4			
SQLClusterSuite	self join	1000000	FAILED	:	2	at com.databricks.ba	10000000	TIMED_OUT	3			
SQLClusterSuite	self join on cached data	100000000	TIMED_OUT		4		1000000	TIMED_OUT	4			
SQLClusterSuite	self join with common keys	1000000	TIMED_OUT	:	2		1000000	TIMED_OUT	2			

Four Lessons

What goes wrong in cloud systems?

Testing for scalability & stability

Developing control planes

Evolving big data systems for the cloud

3

4

Developing Control Planes

Cloud software consists of interacting, independently updated services, many of which call other services

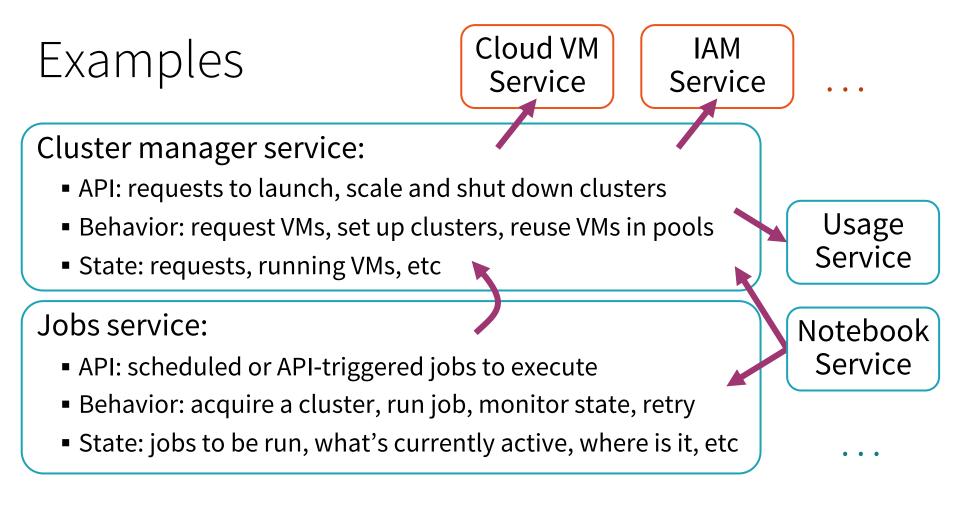
What should be the programming model for this software?

Cluster manager service:

- API: requests to launch, scale and shut down clusters
- Behavior: request VMs, set up clusters, reuse VMs in pools
- State: requests, running VMs, etc

Jobs service:

- API: scheduled or API-triggered jobs to execute
- Behavior: acquire a cluster, run job, monitor state, retry
- State: jobs to be run, what's currently active, where is it, etc



Control Plane Infrastructure

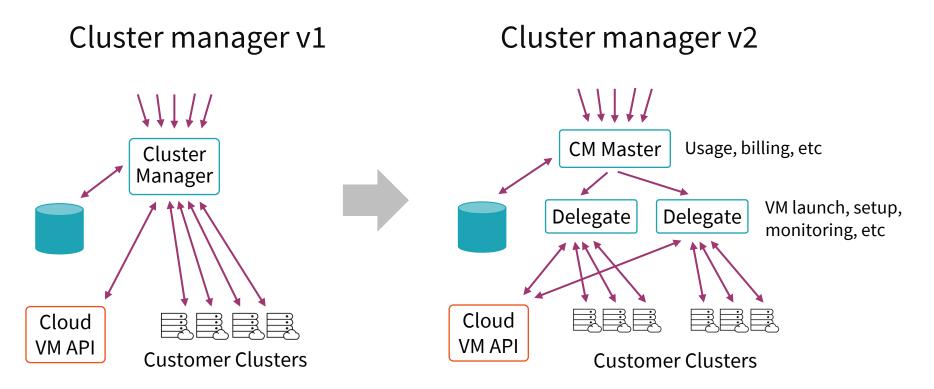
Our Platform Team develops a service framework that handles:

- Deployment: AWS, Azure, local, special environments
- Storage: databases, schema updates, etc
- Security tokens & roles
- Monitoring
- API routing & limiting
- Feature flagging

Best Practices

- Isolate state: relational DB is usually enough with org sharding
- Isolate components that scale differently: allows separate scaling
- Manage changes through feature flags: fastest, safest way
- Watch key metrics: most outages could be predicted from one of CPU load, memory load, DB load or thread pool exhaustion
- Test pyramid: 70% unit tests, 20% integration, 10% end-to-end

Example: Cluster Manager



databricks

Challenges in Control Planes

Fine-grained isolation *within* a service

Non-standard failure modes (e.g. network conn. exhaustion)

Transitioning between architectures

Four Lessons

What goes wrong in cloud systems?

Testing for scalability & stability

Developing control planes

Evolving big data systems for the cloud

3

4

Evolving Big Data Systems for the Cloud

MapReduce, Spark, etc were designed for on-premise datacenters

How can we evolve these leverage the benefits of the cloud?

Availability, elasticity, scale, multitenancy, etc

Two examples from Databricks:

- Delta Lake: ACID on cloud object stores
- Cloudifying Apache Spark

Delta Lake Motivation

Cloud object stores (S3, Azure blob, etc) are the largest storage systems on the planet

Unmatched availability, parallel I/O bandwidth, and cost-efficiency

Open source big data stack was designed for on-prem world

- Filesystem API for storage
- RDBMS for table metadata (Hive metastore)
- Other distributed systems, e.g. ZooKeeper

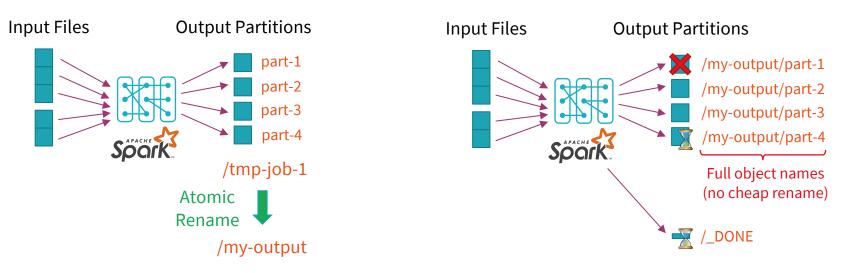
Stronger consistency model

Scale & management complexity

How can big data systems fully leverage cloud object stores?

Example: Atomic Parallel Writes

Spark on HDFS



Spark on S3 (Naïve)

Real cases are harder (e.g. appending to a table)

Delta Lake Design

- 1. Track metadata that says *which* objects are part of a dataset
- 2. Store this metadata itself in a cloud object store
 - Write-ahead log in S3, compressed using Apache Parquet

Input Files Out

Commit

Manager

Output Partitions

/my-output/part-X
/my-output/part-Y
/my-output/part-Z
/my-output/part-W

Before Delta Lake: 50% of Spark support issues were about cloud storage

After: fewer issues, increased perf

/my-output/_delta_log →

10x faster metadata ops than Hive on S3!

https://delta.io

Major Benefits of Delta Lake

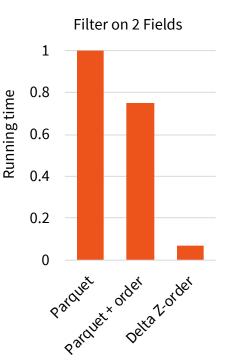
Once we had transactions over S3, we could build much more:

- UPSERT, DELETE, etc (GDPR)
- Caching
- Multidimensional indexing
- Audit logging
- Time travel

databricks

Background optimization

Result: greatly simplified customers' data architectures



Other Cloud Features

Scheduler-integrated autoscaling for Apache Spark

Autoscaling local storage volumes

User isolation for high-concurrency Spark clusters

- Serverless experience for users inside an org
- Separate library envs, IAM roles, performance & fault isolation

Conclusion

The cloud is eating software by enabling much better products

• Self-managing, elastic, more reliable & scalable

But building cloud products is understudied and hard

• Come see what's involved in an internship!

Many opportunities, from service fabrics to cloud-native systems

We're hiring in SF, Amsterdam & Toronto: databricks.com/jobs

