
Raluca Ada Popa

Securing data in compromised clouds

UC Berkeley

raluca.popa@berkeley.edu @ralucaadapopa

Massive cloud attacks are relentless

user records breached

Yahoo 2014: Equifax 2017: Capital One 2019:

Massive cloud attacks are relentless

user records breached

Yahoo 2014:

500,000,000

Equifax 2017:

147,000,000

Capital One 2019:

100,000,000

Traditional security has a fundamental weakness

cloud

sensitive user data

Traditional security has a fundamental weakness

cloud

sensitive user data

cloud

Attackers eventually break in

cloud

Attackers eventually break in

Assume the attacker will break in

“in the cloud […] applications need to protect themselves
instead of relying on firewall-like techniques”

Werner Vogels,
Amazon CTO

cloud

Standard use of encryption

cloud

Standard use of encryption

cloud

Standard use of encryption

cloud

Standard use of encryption

encryption in transit

cloud

Standard use of encryption

encryption in transit

cloud

Standard use of encryption

encryption in transit

encryption
at rest

cloud

Standard use of encryption

encryption in transit

encryption
at rest

cloud

Use encryption

encryption in transit

encryption
at rest

cloud

Use encryption

encryption in transit

encryption
at rest

cloud

Use end-to-end encryption

cloud

Use end-to-end encryption

cloud

Use end-to-end encryption

Systems in the cloud

cloud

Systems in the cloud

cloud

 complexity

Systems in the cloud

cloud

- chat/messaging

 complexity

Systems in the cloud

cloud

- chat/messaging

- email, file sharing

 complexity

Systems in the cloud

cloud

- chat/messaging

- email, file sharing

- database (OLTP)

 complexity

Systems in the cloud

cloud

- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

 complexity

Systems in the cloud

cloud

- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

- machine learning

 complexity

My work

cloud

 complexity

Verena[IEEESP16]
Mylar [NSDI14]
CloudProof [Usenix11]
Arx[VLDB19], Oblix[IEEESP18],
CryptDB[SOSP11],mOPE[IEEESP13],
BlindBox[SIGCOMM15],Embark[NSDI16]
Opaque[NSDI17]

Helen[IEEESP19], Delphi[USEC20],
Bost et al.[NDSS15]

- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

- machine learning

JEDI[USEC19]
WAVE[USEC19]

My work

cloud

 complexity

Verena[IEEESP16]
Mylar [NSDI14]
CloudProof [Usenix11]
Arx[VLDB19], Oblix[IEEESP18],
CryptDB[SOSP11],mOPE[IEEESP13],
BlindBox[SIGCOMM15],Embark[NSDI16]
Opaque[NSDI17]

Helen[IEEESP19], Delphi[USEC20],
Bost et al.[NDSS15]

- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

- machine learning

JEDI[USEC19]
WAVE[USEC19]

End-to-end (E2E) encrypted chat/messaging

End-to-end (E2E) encrypted chat/messaging

Widely adopted industry solutions

End-to-end (E2E) encrypted chat/messaging

Widely adopted industry solutions

Research on many-to-many (JEDI[USEC19]), constrained devices (e.g. IoT
WAVE[USEC19]), usability

E2E encrypted email and file sharing

E2E encrypted email and file sharing

! More complex than chat: add access, revoke access, edit documents

E2E encrypted email and file sharing

! More complex than chat: add access, revoke access, edit documents
! Challenge: key distribution without affecting usability

E2E encrypted email and file sharing

! More complex than chat: add access, revoke access, edit documents
! Challenge: key distribution without affecting usability

E2E encrypted email and file sharing

! More complex than chat: add access, revoke access, edit documents
! Challenge: key distribution without affecting usability

! Research focusing on malicious cloud attackers (Verena[IEEESP16]), usability,
search

Systems in the cloud

cloud

- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

- machine learning

 complexity

Systems in the cloud

cloud

- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

- machine learning

 complexity

Computation on encrypted data [RAD78, Gentry09]

Computation on encrypted data [RAD78, Gentry09]

Enc(data)

Computation on encrypted data [RAD78, Gentry09]

Enc(data)a function F

Computation on encrypted data [RAD78, Gentry09]

Enc(data)a function F

Enc(F(data))

Computation on encrypted data [RAD78, Gentry09]

Enc(data)a function F

Enc(F(data))
Enc(F(data))

Computation on encrypted data [RAD78, Gentry09]

Enc(data)a function F

Enc(F(data))
Enc(F(data))

F(data)

Example: Paillier cryptosystem, F = +
Enc(x) = gxrn mod n2

Enc(y) = gyrn mod n2

Computation on encrypted data [RAD78, Gentry09]

Enc(data)a function F

Enc(F(data))
Enc(F(data))

F(data)

Example: Paillier cryptosystem, F = +
Enc(x) = gxrn mod n2

Enc(y) = gyrn mod n2

Computation on encrypted data [RAD78, Gentry09]

Enc(data)a function F

Enc(F(data))
Enc(F(data))

F(data)

Enc(x) * Enc(y) = gx+y(rr’)n mod n2 = Enc(x+y)
(multiply)

Fully homomorphic encryption

! enables general functions on encrypted data
! despite much progress, remains orders of magnitude too slow

[Gentry09]

Approach to build practical systems: co-design systems and cryptography

systems crypto

Encrypted databases: CryptDB

CryptDB was the first DBMS to process SQL queries on encrypted data

[SOSP11]

Application

under attacktrusted, on premise

Encrypted databases: CryptDB

CryptDB was the first DBMS to process SQL queries on encrypted data

[SOSP11]

Application

under attacktrusted, on premise

Encrypted databases: CryptDB

CryptDB was the first DBMS to process SQL queries on encrypted data

[SOSP11]

Application

under attacktrusted, on premise

CryptDB
proxy

Encrypted databases: CryptDB

CryptDB was the first DBMS to process SQL queries on encrypted data

[SOSP11]

Application

under attacktrusted, on premise

query CryptDB
proxy

Encrypted databases: CryptDB

CryptDB was the first DBMS to process SQL queries on encrypted data

[SOSP11]

Application

under attacktrusted, on premise

query rewritten queryCryptDB
proxy

Encrypted databases: CryptDB

CryptDB was the first DBMS to process SQL queries on encrypted data

[SOSP11]

Application

under attacktrusted, on premise

query rewritten query

encrypted results

CryptDB
proxy

Encrypted databases: CryptDB

CryptDB was the first DBMS to process SQL queries on encrypted data

[SOSP11]

Application

under attacktrusted, on premise

query rewritten query

encrypted resultsresults

CryptDB
proxy

Encrypted databases: CryptDB

CryptDB was the first DBMS to process SQL queries on encrypted data

[SOSP11]

Application

under attacktrusted, on premise

query rewritten query

encrypted results
unmodified

results

CryptDB
proxy

Encrypted databases: CryptDB

CryptDB was the first DBMS to process SQL queries on encrypted data

[SOSP11]

Application

under attacktrusted, on premise

query rewritten query

encrypted results
unmodified

unmodified

results

CryptDB
proxy

CryptDB in a nutshell

CryptDB in a nutshell

Observation: Most SQL can be implemented with a few core operations (e.g.,+,=,>)

CryptDB in a nutshell

Observation: Most SQL can be implemented with a few core operations (e.g.,+,=,>)

Tech.#1: Employ an efficient encryption scheme for each operation

CryptDB in a nutshell

Observation: Most SQL can be implemented with a few core operations (e.g.,+,=,>)

Tech.#1: Employ an efficient encryption scheme for each operation
- design your own if needed

CryptDB in a nutshell

Observation: Most SQL can be implemented with a few core operations (e.g.,+,=,>)

Tech.#1: Employ an efficient encryption scheme for each operation
- design your own if needed

Tech.#2, Onion Encryption: combine encryptions based on security vs. functionality

CryptDB in a nutshell

Observation: Most SQL can be implemented with a few core operations (e.g.,+,=,>)

Tech.#1: Employ an efficient encryption scheme for each operation
- design your own if needed

Tech.#2, Onion Encryption: combine encryptions based on security vs. functionality
- e.g., Paillier for +, DET for =

CryptDB in a nutshell

Observation: Most SQL can be implemented with a few core operations (e.g.,+,=,>)

Tech.#1: Employ an efficient encryption scheme for each operation
- design your own if needed

Tech.#2, Onion Encryption: combine encryptions based on security vs. functionality
- e.g., Paillier for +, DET for =

Tech.#3: Redesign the query planner to produce encrypted and transformed query plans

CryptDB in a nutshell

Observation: Most SQL can be implemented with a few core operations (e.g.,+,=,>)

Tech.#1: Employ an efficient encryption scheme for each operation
- design your own if needed

Tech.#2, Onion Encryption: combine encryptions based on security vs. functionality
- e.g., Paillier for +, DET for =

Tech.#3: Redesign the query planner to produce encrypted and transformed query plans
- resulting queries did not change the DBMS

CryptDB in a nutshell

Observation: Most SQL can be implemented with a few core operations (e.g.,+,=,>)

Tech.#1: Employ an efficient encryption scheme for each operation
- design your own if needed

Tech.#2, Onion Encryption: combine encryptions based on security vs. functionality
- e.g., Paillier for +, DET for =

Tech.#3: Redesign the query planner to produce encrypted and transformed query plans
- resulting queries did not change the DBMS

CryptDB in a nutshell

Observation: Most SQL can be implemented with a few core operations (e.g.,+,=,>)

Tech.#1: Employ an efficient encryption scheme for each operation
- design your own if needed

Tech.#2, Onion Encryption: combine encryptions based on security vs. functionality
- e.g., Paillier for +, DET for =

Tech.#3: Redesign the query planner to produce encrypted and transformed query plans
- resulting queries did not change the DBMS

Supported all of TPC-C, 27% throughput loss

A rich line of work followed

! Academic work:

! Industry deployments:

AlwaysEncrypted Google’s
EncryptedBigQuery SEEED

Cipherbase, CMD, Cryptsis, Autocrypt, Clome, SensorCloud, [ABE+13], [TKM+13],
Seabed [PBC+16], BlindSeer[PKV+14], [CJJ+14], [FJK+15], [K15], Arx, MrCrypt,
Monomi, [NKW15],[DDC16],[GSB17],KKN+16], [DCF+20],… > 1000 citations.

…

Lesson: co-design of systems and cryptography

Lesson: co-design of systems and cryptography

A recipe:
1. Focus on a workload. Identify a set of core operations the system needs
2. Identify a suitable encryption building block efficient for each operation
3. Design a planner/compiler that can combine the encryption building blocks
based on their constraints and cost model

Lesson: co-design of systems and cryptography

A recipe:
1. Focus on a workload. Identify a set of core operations the system needs
2. Identify a suitable encryption building block efficient for each operation
3. Design a planner/compiler that can combine the encryption building blocks
based on their constraints and cost model

For the architecture:
- avoid changing existing applications and cloud systems

Lesson: co-design of systems and cryptography

A recipe:
1. Focus on a workload. Identify a set of core operations the system needs
2. Identify a suitable encryption building block efficient for each operation
3. Design a planner/compiler that can combine the encryption building blocks
based on their constraints and cost model

For the architecture:
- avoid changing existing applications and cloud systems

Research challenge: functionality vs security vs performance

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

? complex analytics or ML

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

cloud sees all data cloud learns
nothing

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

cloud sees all data cloud learns
nothing

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

oblivious
(hides access patterns)

cloud sees all data cloud learns
nothing

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

oblivious
(hides access patterns)

cloud sees all data cloud learns
nothing

Leakage from
memory addresses
accessed
Exploitable depending
on attacker strength

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

oblivious
(hides access patterns)

cloud sees all data cloud learns
nothing

practical

too slow
for DBs

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

oblivious
(hides access patterns)

cloud sees all data cloud learns
nothing

Schemes: Cipherbase, [ABE+13],
[TKM+13], Seabed [PBC+16],
BlindSeer[PKV+14], [CJJ+14], [FJK+15],
[K15], Arx, …

Attacks: [NKW15],[DDC16],
[GSB17],KKN+16], [DCF+20],…

practical

too slow
for DBs

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

oblivious
(hides access patterns)

cloud sees all data cloud learns
nothing

Schemes: Cipherbase, [ABE+13],
[TKM+13], Seabed [PBC+16],
BlindSeer[PKV+14], [CJJ+14], [FJK+15],
[K15], Arx, …

Attacks: [NKW15],[DDC16],
[GSB17],KKN+16], [DCF+20],…

practical

too slow
for DBs

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

oblivious
(hides access patterns)

cloud sees all data cloud learns
nothing

Schemes: Cipherbase, [ABE+13],
[TKM+13], Seabed [PBC+16],
BlindSeer[PKV+14], [CJJ+14], [FJK+15],
[K15], Arx, …

Attacks: [NKW15],[DDC16],
[GSB17],KKN+16], [DCF+20],…

practical

too slow
for DBs

oblivious algorithms
([GO93], PathORAM, …)

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

oblivious
(hides access patterns)

cloud sees all data cloud learns
nothing

Schemes: Cipherbase, [ABE+13],
[TKM+13], Seabed [PBC+16],
BlindSeer[PKV+14], [CJJ+14], [FJK+15],
[K15], Arx, …

Attacks: [NKW15],[DDC16],
[GSB17],KKN+16], [DCF+20],…

practical

too slow
for DBs

oblivious algorithms
([GO93], PathORAM, …) lower bounds

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

oblivious
(hides access patterns)

cloud sees all data cloud learns
nothing

Schemes: Cipherbase, [ABE+13],
[TKM+13], Seabed [PBC+16],
BlindSeer[PKV+14], [CJJ+14], [FJK+15],
[K15], Arx, …

Attacks: [NKW15],[DDC16],
[GSB17],KKN+16], [DCF+20],…

practical

too slow
for DBs

oblivious algorithms
([GO93], PathORAM, …)

?

lower bounds

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

oblivious
(hides access patterns)

cloud sees all data cloud learns
nothing

Schemes: Cipherbase, [ABE+13],
[TKM+13], Seabed [PBC+16],
BlindSeer[PKV+14], [CJJ+14], [FJK+15],
[K15], Arx, …

Attacks: [NKW15],[DDC16],
[GSB17],KKN+16], [DCF+20],…

practical

too slow
for DBs

oblivious algorithms
([GO93], PathORAM, …) lower bounds

enclaves+
crypto

Opaque[NSDI17]

Oblix[IEEESP18]

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

oblivious
(hides access patterns)

cloud sees all data cloud learns
nothing

Schemes: Cipherbase, [ABE+13],
[TKM+13], Seabed [PBC+16],
BlindSeer[PKV+14], [CJJ+14], [FJK+15],
[K15], Arx, …

Attacks: [NKW15],[DDC16],
[GSB17],KKN+16], [DCF+20],…

practical

too slow
for DBs

oblivious algorithms
([GO93], PathORAM, …) lower bounds
multi-party
interaction

enclaves+
crypto

Opaque[NSDI17]

Oblix[IEEESP18]
Helen[IEEESP19]

Delphi[USEC20]

Research challenge: functionality vs security vs performance

1. Existing building blocks had limited functionality

2. Sharp security/performance tradeoff. A “rough” sketch:
? complex analytics or ML

semantic security
(= regular encryption)

oblivious
(hides access patterns)

cloud sees all data cloud learns
nothing

Schemes: Cipherbase, [ABE+13],
[TKM+13], Seabed [PBC+16],
BlindSeer[PKV+14], [CJJ+14], [FJK+15],
[K15], Arx, …

Attacks: [NKW15],[DDC16],
[GSB17],KKN+16], [DCF+20],…

practical

too slow
for DBs

oblivious algorithms
([GO93], PathORAM, …) lower bounds
multi-party
interaction

enclaves+
crypto

Opaque[NSDI17]

Oblix[IEEESP18]
Helen[IEEESP19]

Delphi[USEC20]

- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

- machine learning

Systems in the cloud

cloud

 complexity

- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

- machine learning

Systems in the cloud

cloud

 complexity

Hardware enclaves 101

• Hardware-enforced isolated execution environment

Hardware enclaves

memoryon die

core cache

(Intel SGX)

• Hardware-enforced isolated execution environment

Hardware enclaves

memoryon die

core cache MEE

(Intel SGX)

• Hardware-enforced isolated execution environment

Hardware enclaves

memoryon die

core cache MEE

(Intel SGX)

• Hardware-enforced isolated execution environment
• Data decrypted only on the processor

Hardware enclaves

memoryon die

core cache MEE

(Intel SGX)

• Hardware-enforced isolated execution environment
• Data decrypted only on the processor

Hardware enclaves

memoryon die

core cache MEE

• Protect against an attacker who has root access or compromised OS

(Intel SGX)

• Hardware-enforced isolated execution environment
• Data decrypted only on the processor

Hardware enclaves

memoryon die

core cache MEE

• Protect against an attacker who has root access or compromised OS

(Intel SGX)

• Cloud offerings: Azure Confidential Computing, Alibaba Cloud

Remote attestation

Client Server

enclave

Enables verifying which code runs in the enclave and performing key exchange

Remote attestation

Client Server

enclave

Enables verifying which code runs in the enclave and performing key exchange

Remote attestation

client
code

Client Server

enclave

Enables verifying which code runs in the enclave and performing key exchange

Remote attestation

client
code

Client Server

enclave

Enables verifying which code runs in the enclave and performing key exchange

Remote attestation

client
code
hash

Client Server

enclave

Enables verifying which code runs in the enclave and performing key exchange

Remote attestation

client
code

hash

Client Server

enclave

Enables verifying which code runs in the enclave and performing key exchange

Remote attestation

client
code

hash

Client Server

enclave

Enables verifying which code runs in the enclave and performing key exchange

Remote attestation

client
code

hash

Client Server

enclave

Enables verifying which code runs in the enclave and performing key exchange

Remote attestation

client
code

hash

Client Server

enclave

untrusted OS

Enclaves suffer from many side channels:
! cache-timing attacks ([Gotzfried et al17],[Brasser17,…])
! branch predictor based attacks ([Lee et al17],…)
! page fault based attacks ([Xu et al15], …)
! memory bus based attacks (Membuster[USEC20])
! dirty-bit based attacks

Side channels

Enclaves suffer from many side channels:
! cache-timing attacks ([Gotzfried et al17],[Brasser17,…])
! branch predictor based attacks ([Lee et al17],…)
! page fault based attacks ([Xu et al15], …)
! memory bus based attacks (Membuster[USEC20])
! dirty-bit based attacks

Side channels

reduce to exploit
memory addresses

Enclaves suffer from many side channels:
! cache-timing attacks ([Gotzfried et al17],[Brasser17,…])
! branch predictor based attacks ([Lee et al17],…)
! page fault based attacks ([Xu et al15], …)
! memory bus based attacks (Membuster[USEC20])
! dirty-bit based attacks

Side channels

reduce to exploit
memory addresses

prevented by
oblivious

computation

Enclaves suffer from many side channels:
! cache-timing attacks ([Gotzfried et al17],[Brasser17,…])
! branch predictor based attacks ([Lee et al17],…)
! page fault based attacks ([Xu et al15], …)
! memory bus based attacks (Membuster[USEC20])
! dirty-bit based attacks

Side channels

reduce to exploit
memory addresses

prevented by
oblivious

computation

Synergy: enclaves remove expensive network communication of oblivious algorithms

Opaque*: oblivious and encrypted distributed
analytics platform

* Oblivious Platform for Analytic QUEries

Spark SQL
Opaque

SQL ML Graph
Analytics

[NSDI17]

Query execution

Client Cloud

Database

Scheduler

1 2 3

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

1 2 3

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

1 2 3query = SELECT sum(*)
FROM table

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

1 2 3

Query

query = SELECT sum(*)
FROM table

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

1 2 3

Query

query = SELECT sum(*)
FROM table

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

1 2 3query = SELECT sum(*)
FROM table

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

1 2 3query = SELECT sum(*)
FROM table

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

1 2 3query = SELECT sum(*)
FROM table

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

1 2 3query = SELECT sum(*)
FROM table

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

1 2 3

query = SELECT sum(*)
FROM table

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

query = SELECT sum(*)
FROM table

10 13 4

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

query = SELECT sum(*)
FROM table

10

13

4

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

query = SELECT sum(*)
FROM table

27

Query execution

Spark
Driver

Opaque

Catalyst

Client Cloud

Database

Scheduler

query = SELECT sum(*)
FROM table

27

Opaque components

Opaque components

Data encryption and authentication

Opaque components

Computation verification

Data encryption and authentication

Opaque components

Distributed oblivious operators
Oblivious

Filter
Oblivious

Aggregation
Oblivious

Join

Computation verification

Data encryption and authentication

Opaque components

Distributed oblivious operators
Oblivious

Filter
Oblivious

Aggregation
Oblivious

Join

Computation verification

Rule-based opt. Cost-based opt.

Data encryption and authentication

Oblivious query planning

Cost model

Open source

https://github.com/ucbrise/opaque

Adoption: IBM RestAssured, Ericsson, Alibaba

https://github.com/ucbrise/opaque

- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

- collaborative machine
learning

Systems in the cloud

cloud

 complexity

- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

- collaborative machine
learning

Systems in the cloud

cloud

 complexity

Money laundering detection

Money laundering detection
• Bank wants to detect money

laundering using machine
learning

Money laundering detection
• Bank wants to detect money

laundering using machine
learning

Money laundering detection
• Bank wants to detect money

laundering using machine
learning

• Criminals conceal illegal
activities across many banks

Money laundering detection
• Bank wants to detect money

laundering using machine
learning

• Criminals conceal illegal
activities across many banks

Money laundering detection
• Bank wants to detect money

laundering using machine
learning

• Criminals conceal illegal
activities across many banks

Money laundering detection

Money laundering detection
• Want to jointly compute a

model on customer
transaction data across
many banks

Money laundering detection
• Want to jointly compute a

model on customer
transaction data across
many banks

Money laundering detection
• Want to jointly compute a

model on customer
transaction data across
many banks

• Cannot share data
because these banks are
competing with each other

Two approaches

Two approaches

A different setup tradeoff:
! Hardware enclaves + oblivious algorithms
! Secure multi-party computation

Secure collaborative ML via enclaves

User A

User B

User C

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C Each client attests separately
and transfers the secret key

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C Each client attests separately
and transfers the secret key

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C Each client attests separately
and transfers the secret key

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C Each client attests separately
and transfers the secret key

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C Each client attests separately
and transfers the secret key

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C Each client attests separately
and transfers the secret key

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C Each client attests separately
and transfers the secret key

Key management
enclave

User A

User B

User C

A

B

C

Worker
enclaves

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C

A

B

C

Worker
enclaves

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C

A

B

C

Worker
enclaves

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C

A

B

C

Worker
enclaves

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C A B C

Worker
enclaves

Secure collaborative ML via enclaves

Key management
enclave

User A

User B

User C A B C

Worker
enclaves

run oblivious
algorithms;
mc2 work in
progress

Secure collaborative ML via enclaves

Secure multiparty computation
(MPC

[Yao82,GMW87,BGW88]

)

Trusted
third party

Secure multiparty computation
(MPC

[Yao82,GMW87,BGW88]

)
• Parties emulate a trusted

third party via cryptography

Trusted
third party

Secure multiparty computation
(MPC

[Yao82,GMW87,BGW88]

)
• Parties emulate a trusted

third party via cryptography

Secure multiparty computation
(MPC

[Yao82,GMW87,BGW88]

)
• Parties emulate a trusted

third party via cryptography

Secure multiparty computation
(MPC

[Yao82,GMW87,BGW88]

)
• Parties emulate a trusted

third party via cryptography

• No party learns any party’s
input beyond the final
result

©2017 RISELab

Main challenge: Performance

42

Generic secure multi-
party computation

[SPDZ]

©2017 RISELab

Main challenge: Performance

42

Generic secure multi-
party computation

[SPDZ]

Example: train linear models

©2017 RISELab

Main challenge: Performance

42

Generic secure multi-
party computation

[SPDZ]

Example: train linear models

3 months

©2017 RISELab

Main challenge: Performance

42

Generic secure multi-
party computation

[SPDZ] Systems Crypto

Example: train linear models

3 months

ML
Our approach:

©2017 RISELab

Main challenge: Performance

42

Generic secure multi-
party computation

[SPDZ] Systems Crypto

Example: train linear models

3 months

ML

Helen [IEEESP’19]

Our approach:

©2017 RISELab

Main challenge: Performance

42

Generic secure multi-
party computation

[SPDZ] Systems Crypto

Example: train linear models

3 months

ML

< 3 hours

Helen [IEEESP’19]

Our approach:

©2017 RISELab

Main challenge: Performance

42

Generic secure multi-
party computation

[SPDZ] Systems Crypto

Example: train linear models

3 months

ML

< 3 hours

Helen [IEEESP’19]

Our approach:

Delphi [USEC20]: secure inference for neural networks

mc2: work in progress
multi-party cryptographic
collaboration

mc2: work in progress

An easy-to-use secure collaborative learning platform for the non-expert

multi-party cryptographic
collaboration

https://github.com/mc2-project

mc2: work in progress

An easy-to-use secure collaborative learning platform for the non-expert

multi-party cryptographic
collaboration

https://github.com/mc2-project

mc2: work in progress

An easy-to-use secure collaborative learning platform for the non-expert

User specifies Python DSL for learning task which automatically compiles to
oblivious collaborative computation in enclaves or in MPC

multi-party cryptographic
collaboration

https://github.com/mc2-project

mc2: work in progress

An easy-to-use secure collaborative learning platform for the non-expert

User specifies Python DSL for learning task which automatically compiles to
oblivious collaborative computation in enclaves or in MPC

Open source: https://github.com/mc2-project
• Secure collaborative XGBoost

multi-party cryptographic
collaboration

https://github.com/mc2-project

mc2: work in progress

An easy-to-use secure collaborative learning platform for the non-expert

User specifies Python DSL for learning task which automatically compiles to
oblivious collaborative computation in enclaves or in MPC

Open source: https://github.com/mc2-project
• Secure collaborative XGBoost
• Collaboration with ScotiaBank, Azure Confidential, Ericsson, and Ant Financial

multi-party cryptographic
collaboration

https://github.com/mc2-project

mc2: work in progress

An easy-to-use secure collaborative learning platform for the non-expert

User specifies Python DSL for learning task which automatically compiles to
oblivious collaborative computation in enclaves or in MPC

Open source: https://github.com/mc2-project
• Secure collaborative XGBoost
• Collaboration with ScotiaBank, Azure Confidential, Ericsson, and Ant Financial

Potential societal impact is exciting

multi-party cryptographic
collaboration

https://github.com/mc2-project

- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

- collaborative machine
learning

Systems in the cloud

cloud

 complexity

Principles
! Assume attackers will eventually break into the cloud
! Be prepared by processing data in encrypted form

! Co-design systems and cryptography for performance

Principles
! Assume attackers will eventually break into the cloud
! Be prepared by processing data in encrypted form

! Co-design systems and cryptography for performance
1. Focus on a workload. Identify a set of core operations the system needs
2. Identify an efficient secure protocol for each operation
3. Design a planner to combine the building blocks based on their constraints and cost model

Principles
! Assume attackers will eventually break into the cloud
! Be prepared by processing data in encrypted form

! Co-design systems and cryptography for performance
1. Focus on a workload. Identify a set of core operations the system needs
2. Identify an efficient secure protocol for each operation
3. Design a planner to combine the building blocks based on their constraints and cost model

Thank you!

raluca.popa@berkeley.edu @ralucaadapopa

