
Raluca Ada Popa

Securing data in compromised clouds

UC Berkeley

raluca.popa@berkeley.edu @ralucaadapopa



Massive cloud attacks are relentless

user records breached

Yahoo 2014: Equifax 2017: Capital One 2019:



Massive cloud attacks are relentless

user records breached

Yahoo 2014:

500,000,000

Equifax 2017:

147,000,000

Capital One 2019:

100,000,000
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Assume the attacker will break in 

“in the cloud […] applications need to protect themselves 
instead of relying on firewall-like techniques”

Werner Vogels, 
Amazon CTO
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End-to-end (E2E) encrypted chat/messaging

Widely adopted industry solutions

Research on many-to-many (JEDI[USEC19]), constrained devices (e.g. IoT 
WAVE[USEC19]), usability
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E2E encrypted email and file sharing

! More complex than chat: add access, revoke access, edit documents
! Challenge: key distribution without affecting usability

! Research focusing on malicious cloud attackers (Verena[IEEESP16]), usability, 
search
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Example: Paillier cryptosystem, F = +
Enc(x) = gxrn mod n2

Enc(y) = gyrn mod n2

Computation on encrypted data [RAD78, Gentry09]

Enc(data)a function F

Enc(F(data))
Enc(F(data))

F(data)

Enc(x) * Enc(y) = gx+y(rr’)n mod n2 = Enc(x+y)
(multiply)



Fully homomorphic encryption

! enables general functions on encrypted data
! despite much progress, remains orders of magnitude too slow

[Gentry09]



Approach to build practical systems: co-design systems and cryptography

systems crypto
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CryptDB in a nutshell

Observation: Most SQL can be implemented with a few core operations (e.g.,+,=,>)

Tech.#1:  Employ an efficient encryption scheme for each operation
- design your own if needed

Tech.#2, Onion Encryption: combine encryptions based on security vs. functionality
- e.g., Paillier for +, DET for =

Tech.#3: Redesign the query planner to produce encrypted and transformed query plans
- resulting queries did not change the DBMS 

Supported all of TPC-C, 27% throughput loss



A rich line of work followed

! Academic work:

! Industry deployments:

AlwaysEncrypted Google’s 
EncryptedBigQuery SEEED

Cipherbase, CMD, Cryptsis, Autocrypt, Clome, SensorCloud, [ABE+13], [TKM+13], 
Seabed [PBC+16], BlindSeer[PKV+14], [CJJ+14], [FJK+15], [K15], Arx, MrCrypt, 
Monomi, [NKW15],[DDC16],[GSB17],KKN+16], [DCF+20],… > 1000 citations.

…
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• Hardware-enforced isolated execution environment
• Data decrypted only on the processor

Hardware enclaves

memoryon die

core cache MEE

• Protect against an attacker who has root access or compromised OS

(Intel SGX)

• Cloud offerings: Azure Confidential Computing, Alibaba Cloud
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Enables verifying which code runs in the enclave and performing key exchange

Remote attestation

client 
code

hash

Client Server

enclave

untrusted OS
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Enclaves suffer from many side channels:
! cache-timing attacks ([Gotzfried et al17],[Brasser17,…])
! branch predictor based attacks ([Lee et al17],…)
! page fault based attacks ([Xu et al15], …)
! memory bus based attacks (Membuster[USEC20])
! dirty-bit based attacks

Side channels

reduce to exploit 
memory addresses

prevented by 
oblivious 

computation

Synergy: enclaves remove expensive network communication of oblivious algorithms



Opaque*: oblivious and encrypted distributed 
analytics platform

* Oblivious Platform for Analytic QUEries

Spark SQL
Opaque

SQL ML Graph 
Analytics

[NSDI17]
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Opaque components

Distributed oblivious operators
Oblivious 

Filter
Oblivious 

Aggregation
Oblivious 

Join

Computation verification

Rule-based opt. Cost-based opt.

Data encryption and authentication

Oblivious query planning

Cost model



Open source

https://github.com/ucbrise/opaque

Adoption: IBM RestAssured, Ericsson, Alibaba

https://github.com/ucbrise/opaque
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Money laundering detection
• Want to jointly compute a 

model on customer 
transaction data across 
many banks

• Cannot share data 
because these banks are 
competing with each other
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A different setup tradeoff:
! Hardware enclaves + oblivious algorithms
! Secure multi-party computation
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Key management 
enclave

User A

User B

User C A B C

Worker 
enclaves

run oblivious 
algorithms;
mc2 work in
progress

Secure collaborative ML via enclaves
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Secure multiparty computation 
(MPC

[Yao82,GMW87,BGW88]

)
• Parties emulate a trusted 

third party via cryptography

• No party learns any party’s 
input beyond the final 
result
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Main challenge: Performance
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Generic secure multi-
party computation 

[SPDZ] Systems Crypto

Example: train linear models

3 months

ML

< 3 hours

Helen [IEEESP’19]

Our approach:

Delphi [USEC20]: secure inference for neural networks
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mc2: work in progress

An easy-to-use secure collaborative learning platform for the non-expert

User specifies Python DSL for learning task which automatically compiles to 
oblivious collaborative computation in enclaves or in MPC

Open source:  https://github.com/mc2-project
• Secure collaborative XGBoost
• Collaboration with ScotiaBank, Azure Confidential, Ericsson, and Ant Financial 

Potential societal impact is exciting

multi-party cryptographic 
collaboration

https://github.com/mc2-project


- chat/messaging

- email, file sharing

- database (OLTP)

- database (analytics)

- collaborative machine 
learning

Systems in the cloud

cloud

 complexity
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Principles
! Assume attackers will eventually break into the cloud
! Be prepared by processing data in encrypted form

! Co-design systems and cryptography for performance
1. Focus on a workload. Identify a set of core operations the system needs
2. Identify an efficient secure protocol for each operation
3. Design a planner to combine the building blocks based on their constraints and cost model

Thank you!

raluca.popa@berkeley.edu @ralucaadapopa


