MUTANT: Balancing Storage Cost and
Performance in LSM-Tree Data Stores

Hobin Yoon1, Juncheng Yang?
Sveinn Kristjansson3, Steinn Sigurdarson4
Ymir Vigfusson2.5, Ada Gavrilovska

1Georgia Institute of Technology, 2Emory University
3Spotify, 4Takumi, 5SReykjavik University

Why Dave, a Database Engineer, Quit

Hey Dave, our DB costs $30 M/year. Can you make it less expensive?

No problem, Carol!

- Find anew * Live data migration: backup, replicate new data, validate
storage type data, migrate applications. Could take months [Netflix].

(After 2 months)

Here is a new database. It's a bit slower, but costs only $20 M!

Dave, the budget is getting tighter. Can you make it $10 M?

(After 2 months)

Here is a $10 M database. | was lucky to o
find a right storage device for the budget. @

Actually, it's too slow now. Can you make it a bit faster?
| fired 5 people and we have more budget now.

53.;’:;!
Still there? -

Seamless Cost-Performance Trade-offs

Latency

A O
Data_
migration .
- Cost (M$/
10 15 20 year)

Wouldn’t it be nice if

* You can get any cost-
performance trade-off?

« DB does migrations by itself?

Mutant, a database storage layer

with seamless cost-performance trade-offs!

Problem Formulation

Organize DB storage blocks into fast, expensive storage,
and slow, inexpensive storage.

With cost constraint:
“I'd like to pay no more than $0.03 /GB/month,

while keeping the latency minimum.”

With latency constraint:

“I'd like the latency no higher than 40 ms,
while keeping the cost minimum.”

NoSQL DBs

LSM (Log-Structured Merge) tree

@ Cloud Bigtable

E

cassandra

‘ LEVELDB %ﬁ RocksDB .mongo

Write a record

Read a record

log

MemTable » merge
............................ flush ~ .
v T v
Commit SSTable | | SSTable

SSTable

L1

L

N

Read optimization

Key

1 Keyspace

10x more
¥ SSTables

DEO [o+ |

[50](51] [s2] B8 [36] B [40] *

O(log n)

Organizing SSTables ...

SSTables have different

Batch
MemTable » :
Memory \wrltlng adcCCess frequenmes
.. bereeeessnm e 1 .
Disk P
Commit log SSTable || SSTable > 1 S
55 10 .
=) o, D
/ 7 \ §% 102 f-
4 \ o € o e
= n o oo e
< g T
$ " $$$ A O

104 - L L e
0 51015202530354045

Access frequency rank
Web workloads have a

strong temporal locality >, U EEm——————e— 1
5 2 '
1 O
P 1-min avg e c 101
g 10t 1-h
g -hour avg o O
T 102 T I —
LS S O e i 2
T 10 @ = = E=E==!EEE
= 105 Qo o me e
§ 106 % 8] E:=.-= _=g==-.-:.- 103
« 107 = O = [l .E -=-§§-=§
wn 9 | P11 [—-Egsﬂ
0 2 4 6 8 1012 14 16 N ®
Object age (day) 0 2 4 6 8 10 12 14 Access

Time (day) freq

Problem Formulation

Constraint

Optimization
goal

I'd like to pay no
more than $0.03 /
GB/month,

while keeping the
latency minimum

Hard to formulate:
* No storage latency model
» Parallel accesses

)
b

I’d like to keep the total SSTable
size in the fast storage no more
than 50 GB,

while maximizing the
SSTable accesses in the
fast storage

SSTable Organization

« “Store more frequently accessed SSTables into the fast storage of a
limited size.”
« 0/1 Knapsack problem!
« O(nW) time and space with dynamic programming
« with n SSTables and a W-byte storage A

« Greedy algorithm!
« Using SSTable access freq / size
« Faster: O(n)

* Almost optimal! The item sizes are a lot smaller than W
(64 MB or 160 MB vs. TBs) ~/

* Now, how do you migrate SSTables between storages?

SSTable Migration

Read a record

A
l

merge
el B et

SSTable ... | SSTable -SSTable | ---| SSTable

E

« Copy SSTable - Redirect reads (e
- Delete old SSTable

7Y

|5

« Use SSTable compaction!

« SSTable migration = Single SSTable compaction @
to a different storage

SSTable Compaction

Level n

Level n+1

Level n

Level n+1

SSTable compaction

SSTable Compaction

Level n

Level n+1

Ouput SSTable temperature
= Average of the input SSTable temperatures

Level n

ol

Level n+1 [

System Architecture

[Client
Storage—Target
characteristics | cost
Schedule
Migr/comp migration
scheduler |
v
SSTable
SSTable || SSTable Organizer
migrator | [compactor -
|) f
SSTables L{[pﬂqate
J | J | Accessed emp

Database MUTANT

Implementation

e Mutantin with 658 lines of C++ code

and 110 lines for the integration.

Minimal API

Clients:

void Open(Options);
void SetCost(target_cost);

Options opt;

opt.storages.Add(
"/mnt/local-ssdl/mu-rocks-stg", 0.528,
"/mnt/ebs—stl/mu-rocks-stg", 0.045);

DB::0Open(opt);

DB::SetCost(0.2);

Database:

SSTable temperature monitor

void Register(sstable);
void Unregister(sstable);
void Accessed(sstable);

SSTable migration

void SchedMigr();
sstable PickSstToMigr();
sstable GetTargetDev();

Evaluation

. Cost Adaptability?
. Cost-Performance Spectrum?

. System Overhead?

Evaluation Setup

« Fast storage: Local SSD (EC2 instance store). $0.528/GB/month
« Slow storage: Remote HDD (EBS Magnetic volume). $0.045

1.0 —— 1.0 i
0.8 ’] 0.8 (j
B 0.6 Local [EBS E 0.6 EBS Local
O 0.4 SSD [Mag O 04 Mag SSD
0.2 0.2
0.0 0.0 1
0.01 0.1 1 10 100 0 100 200 300
Latency (ms) Throughput (MB/sec)
4KB random read 64 MB sequential write

* Workloads: YCSB "read latest” and QuizUp

Cost Adaptability

Time for SSTable
temperature
stabilization

Storage cost

($/GB/month)

Fast: $0.528, Slow: $0.045

Target cost ($/GB/month)

Initial value Changes

0.4 0.2 0.3
| | |

00:00 00:15 00:30 00:45
Time (HH:MM)

Target cost £ €

Latency

Target cost ($/GB/month)
Initial value Changes
0.4 0.2 0.3

Storage cost
($/GB/month)

O I T T S I ST P ST RS T W R S— R R S—

00:00 00:15 00:30 00:45 01:00
Time (HH:MM)

N — I
> 10 | S’ § Read 99th
c : :
i—é g 1 -\ 4 T Read avg
m : :
o 0.1 \ . SIS LTI PITTS (ETCops o \Nrite 99th
; v Write avg

Cost-Performance Spectrum

Read latency (ms)

0.1

10
Throughput (K IOPS)

100

+0.0
x 0.1

x 0.2

45

Cost ($/GB/month)

Summary Summary

Mutant: Automatic, seamless cost-
performance trade-offs by

(a) carefully monitoring SSTable temperatures

P and (b) organizing them into different
. storages.
&)

Cost-performance trade-offs in DBs
were manual and limited in options.

Latency

Dave’s life made easy! @

