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Why Dave, a Database Engineer, Quit

Hey Dave, our DB costs $30 M/year. Can you make it less expensive?

No problem, Carol!

- Find anew * Live data migration: backup, replicate new data, validate
storage type data, migrate applications. Could take months [Netflix].

(After 2 months)

Here is a new database. It's a bit slower, but costs only $20 M!

Dave, the budget is getting tighter. Can you make it $10 M?

(After 2 months)

Here is a $10 M database. | was lucky to o
find a right storage device for the budget. @

Actually, it's too slow now. Can you make it a bit faster?
| fired 5 people and we have more budget now.

53.;’:;!
Still there? -



Seamless Cost-Performance Trade-offs
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Wouldn’t it be nice if

* You can get any cost-
performance trade-off?

« DB does migrations by itself?

Mutant, a database storage layer

with seamless cost-performance trade-offs!



Problem Formulation

Organize DB storage blocks into fast, expensive storage,
and slow, inexpensive storage.

With cost constraint:
“I'd like to pay no more than $0.03 /GB/month,

while keeping the latency minimum.”

With latency constraint:

“I'd like the latency no higher than 40 ms,
while keeping the cost minimum.”



NoSQL DBs

LSM (Log-Structured Merge) tree
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Organizing SSTables ...

SSTables have different
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Problem Formulation

Constraint

Optimization
goal

I'd like to pay no
more than $0.03 /
GB/month,

while keeping the
latency minimum

Hard to formulate:
* No storage latency model
» Parallel accesses

)
b

I’d like to keep the total SSTable
size in the fast storage no more
than 50 GB,

while maximizing the
SSTable accesses in the
fast storage



SSTable Organization

« “Store more frequently accessed SSTables into the fast storage of a
limited size.”
« 0/1 Knapsack problem!
« O(nW) time and space with dynamic programming
« with n SSTables and a W-byte storage A

« Greedy algorithm!
« Using SSTable access freq / size
« Faster: O(n)

* Almost optimal! The item sizes are a lot smaller than W
(64 MB or 160 MB vs. TBs) ~/

* Now, how do you migrate SSTables between storages?



SSTable Migration

Read a record
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« Copy SSTable - Redirect reads (e
- Delete old SSTable
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« Use SSTable compaction!

« SSTable migration = Single SSTable compaction @
to a different storage



SSTable Compaction
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SSTable compaction




SSTable Compaction

Level n

Level n+1

Ouput SSTable temperature
= Average of the input SSTable temperatures

Level n

ol

Level n+1 [




System Architecture
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Implementation

e Mutantin with 658 lines of C++ code

and 110 lines for the integration.

Minimal API

Clients:

void Open(Options);
void SetCost(target_cost);

Options opt;

opt.storages.Add(
"/mnt/local-ssdl/mu-rocks-stg", 0.528,
"/mnt/ebs—stl/mu-rocks-stg", 0.045);

DB::0Open(opt);

DB::SetCost(0.2);

Database:

SSTable temperature monitor

void Register(sstable);
void Unregister(sstable);
void Accessed(sstable);

SSTable migration

void SchedMigr();
sstable PickSstToMigr();
sstable GetTargetDev();



Evaluation

. Cost Adaptability?
. Cost-Performance Spectrum?

. System Overhead?



Evaluation Setup

« Fast storage: Local SSD (EC2 instance store). $0.528/GB/month
« Slow storage: Remote HDD (EBS Magnetic volume). $0.045
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* Workloads: YCSB "read latest” and QuizUp



Cost Adaptability

Time for SSTable
temperature
stabilization

Storage cost
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Latency
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Cost-Performance Spectrum
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Summary Summary

Mutant: Automatic, seamless cost-
performance trade-offs by

(a) carefully monitoring SSTable temperatures

P and (b) organizing them into different
. storages.
&)

Cost-performance trade-offs in DBs
were manual and limited in options.

Latency

Dave’s life made easy! @




