
MUTANT: Balancing Storage Cost and
Performance in LSM-Tree Data Stores

Hobin Yoon1, Juncheng Yang2
Sveinn Kristjansson3, Steinn Sigurdarson4

 Ymir Vigfusson2,5, Ada Gavrilovska1

1Georgia Institute of Technology, 2Emory University
3Spotify, 4Takumi, 5Reykjavik University

Why Dave, a Database Engineer, Quit

• Live data migration: backup, replicate new data, validate
data, migrate applications. Could take months [Netflix].

No problem, Carol!

Hey Dave, our DB costs $30 M/year. Can you make it less expensive?

Dave, the budget is getting tighter. Can you make it $10 M?

Here is a new database. It’s a bit slower, but costs only $20 M!
(After 2 months)

Still there?

Actually, it’s too slow now. Can you make it a bit faster?
I fired 5 people and we have more budget now.

• Find a new
storage type

…

Here is a $10 M database. I was lucky to
find a right storage device for the budget.

(After 2 months)

Seamless Cost-Performance Trade-offs

Wouldn’t it be nice if
• You can get any cost-

performance trade-off?
• DB does migrations by itself?

Mutant, a database storage layer

with seamless cost-performance trade-offs!

Cost (M$/
year)

La
te

nc
y

10 15 20

Data
migration

Problem Formulation

With cost constraint:

“I’d like to pay no more than $0.03 /GB/month,

while keeping the latency minimum.”

With latency constraint:
“I’d like the latency no higher than 40 ms,

while keeping the cost minimum.”

Organize DB storage blocks into fast, expensive storage,
and slow, inexpensive storage.

NoSQL DBs

• LSM (Log-Structured Merge) tree

MemTable
Memory

Disk
Commit

log SSTable SSTable SSTable···

merge

Read a recordWrite a record

flush

• Read optimization

L0

L1 60

71

Keyspace

64

50 51 52 35 36 37 40L2

10x more
SSTables

Key

O(log n)

Organizing SSTables …

Web workloads have a
strong temporal locality

?

$ $$$

MemTable
Memory

Disk
Commit log SSTable SSTable ···

Batch
writing

S
S

Ta
bl

es
 o

rd
er

ed
 b

y
ac

ce
ss

 fr
eq

ue
nc

ie
s

SSTables have different
access frequencies

Problem Formulation

I’d like to pay no
more than $0.03 /
GB/month,

while keeping the
latency minimum

Constraint

Optimization
goal

while maximizing the
SSTable accesses in the
fast storage

I’d like to keep the total SSTable
size in the fast storage no more
than 50 GB,

Hard to formulate:
• No storage latency model
• Parallel accesses

SSTable Organization

• “Store more frequently accessed SSTables into the fast storage of a
limited size.”

• 0/1 Knapsack problem!
• O(nW) time and space with dynamic programming

• with n SSTables and a W-byte storage

• Greedy algorithm!
• Using SSTable access freq / size
• Faster: O(n)
• Almost optimal! The item sizes are a lot smaller than W

(64 MB or 160 MB vs. TBs)

• Now, how do you migrate SSTables between storages?

SSTable Migration

SSTable SSTable···

merge

Read a record

···SSTable SSTable

• Copy SSTable ! Redirect reads 
! Delete old SSTable

• Use SSTable compaction!
• SSTable migration = Single SSTable compaction

to a different storage

SSTable Compaction

Level n

Level n+1

Level n

Level n+1

SSTable compaction

Ouput SSTable temperature 
= Average of the input SSTable temperatures

SSTable Compaction

Level n

Level n+1

Level n

Level n+1

System Architecture

Storage
characteristics

Target
cost

Update
tempAccessed

Schedule
migration

SSTable
Organizer

Implementation

• Mutant in with 658 lines of C++ code  
and 110 lines for the integration.

Database:

• Minimal API

Clients:

SSTable temperature monitor

SSTable migration

Evaluation

• Cost Adaptability?

• Cost-Performance Spectrum?

• System Overhead?

Evaluation Setup

• Fast storage: Local SSD (EC2 instance store). $0.528/GB/month
• Slow storage: Remote HDD (EBS Magnetic volume). $0.045

4KB random read 64 MB sequential write

• Workloads: YCSB ”read latest” and QuizUp

Cost Adaptability

Fast: $0.528, Slow: $0.045

Target cost ± ε

Time for SSTable
temperature
stabilization

Latency

Cost-Performance Spectrum

Summary
Intro
Background
Motivation
Design

Implementatio
n
Evaluation
Related work
Summary

Cost-performance trade-offs in DBs
were manual and limited in options.

Cost

La
te

nc
y

Mutant: Automatic, seamless cost-
performance trade-offs by

(a) carefully monitoring SSTable temperatures
and (b) organizing them into different

storages.

Mutant
Dave’s life made easy!

