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Matrix-Parameterized Models (MPMs)

• Model parameters are represented as a matrix

• Other examples: Topic Model, Multiclass Logistic Regression, Distance 
Metric Learning, Sparse Coding, Group Lasso, etc. 
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Parameter Matrices Could Be Very Large

LightLDA Topic Model
(Yuan et al. 2015)

The topic matrix has 50 billion entries.

Google Brain Neural Network
(Le et al. 2012)

The weight matrices have 1.3 billion entries.



Existing Approaches

• Parameter server frameworks communicate matrices for parameter
synchronization.

High Communication Cost



Existing Approaches (Cont’d)

• Parameter matrices are checkpointed to stable storage for fault
tolerance.

High Disk IO



System and Algorithm Co-design

• System design should be tailored to the unique mathematical 
properties of ML algorithms
• Algorithms can be re-designed to better exploit the system 

architecture
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Sufficient Vectors (SVs)

• Parameter-update matrix can be computed from a few vectors
(referred to as sufficient vectors)
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• Random multicast
• Incremental SV 

checkpoint
• Periodic centralized 

synchronization
• Parameter-replicas 

rotation  

System and Algorithm Co-design
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• SV selection
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Peer-to-Peer Transfer of SVs

(Xie et al. 2016)



Cost Comparison

J, K: dimensions of the parameter matrix
P: number of machines
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How to reduce the number of messages in P2P?



Random Multicast

• Send SVs to a random subset of Q (Q<<P) machines
• Reduce number of messages from ! "# to ! "$



Random Multicast (Cont’d)

• Correctness is guaranteed due to the error-tolerant nature of ML.



Mini-Batch

• It is common to use a mini-batch of training examples (instead of one) to compute
updates

• If represented as matrices, the updates computed w.r.t different samples can be
aggregated into a single update matrix to communicate

• Communication cost does not grow with mini-batch size
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Mini-Batch (Cont’d)

• If represented as SVs, the updates computed w.r.t different samples cannot
be aggregated into a single SV

• The SVs must be transmitted individually
• Communication cost grows linearly with mini-batch size
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examples

Sufficient
vectors !", #" !$, #$ !%, #% !&, #&

Cannot be aggregated



SV Selection

• Select a subset of “representative” SVs to communicate
• Reduce communication cost
• Does not hurt the correctness of updates
• The aggregated update computed from the selected SVs are close to that

from the entire mini-batch
• The selected SVs can well represent the others



SV Selection (Cont’d)

• Algorithm: joint matrix column subset selection
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SV-based Representation

• SV-based representation of parameters
• At iteration !, the state"# of the parameter matrix is

"# = "% + ∆"( ∆"#……

Initialization Update matrices
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Fault Tolerance

• SV-based checkpoint: save SVs computed in each clock on disk
• Consume little disk bandwidth
• Do not halt computation

• Recovery: transform saved SVs into parameter matrix
• Can rollback to the state of every clock
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Convergence Speed
Multi-class Logistic Regression (MLR)

Weight matrix: 325K-by-20K
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Breakdown of Network Waiting Time and 
Computation Time



SV Selection

The number of selected SV pairs

Full batch, 
no selection



Random Multicast

The number of destinations each 
machine sends messages to

Full broadcast, 
no selection



Fault Tolerance



• Random multicast
• Incremental SV 

checkpoint
• Periodic centralized 

synchronization
• Parameter-replicas 

rotation  

Conclusions

System Design Algorithm Design

• SV selection
• Using SVs to represent 

parameter states
• Automatic identification 

of SVs

Communication, fault tolerance, consistency, programming interface


