
Orpheus: Efficient Distributed Machine
Learning via System and Algorithm Co-

design

Pengtao Xie (Petuum Inc)
Jin Kyu Kim (CMU), Qirong Ho (Petuum Inc), Yaoliang Yu (University of

waterloo), Eric P. Xing (Petuum Inc)

Massive Data

Distributed ML Systems
Yahoo LDA DistBelief

Project AdamLi & Smola PSParameter Server
Systems

PregelGraph Processing
Systems

Dataflow Systems

Bosen

Hybrid Systems

GeePS

GraphX

Matrix-Parameterized Models (MPMs)

• Model parameters are represented as a matrix

• Other examples: Topic Model, Multiclass Logistic Regression, Distance
Metric Learning, Sparse Coding, Group Lasso, etc.

Neural Network

!
"

Neurons in
hidden layer 2

Neurons in
hidden layer 1

!

"#!"

Parameter Matrices Could Be Very Large

LightLDA Topic Model
(Yuan et al. 2015)

The topic matrix has 50 billion entries.

Google Brain Neural Network
(Le et al. 2012)

The weight matrices have 1.3 billion entries.

Existing Approaches

• Parameter server frameworks communicate matrices for parameter
synchronization.

High Communication Cost

Existing Approaches (Cont’d)

• Parameter matrices are checkpointed to stable storage for fault
tolerance.

High Disk IO

System and Algorithm Co-design

• System design should be tailored to the unique mathematical
properties of ML algorithms
• Algorithms can be re-designed to better exploit the system

architecture

System
Design

Algorithm
Design

Sufficient Vectors (SVs)

• Parameter-update matrix can be computed from a few vectors
(referred to as sufficient vectors)

∆W # $= ⨂

&×(Entries
& + (Entries Sufficient

Vectors

(Xie et al. 2016)

• Random multicast
• Incremental SV

checkpoint
• Periodic centralized

synchronization
• Parameter-replicas

rotation

System and Algorithm Co-design

System Design Algorithm Design

• SV selection
• Using SVs to represent

parameter states
• Automatic identification

of SVs

Communication, fault tolerance, consistency, programming interface

Outline

• Introduction
• Communication
• Fault tolerance
• Evaluation
• Conclusions

Peer-to-Peer Transfer of SVs

(Xie et al. 2016)

Cost Comparison

J, K: dimensions of the parameter matrix
P: number of machines

Size of one
message

Number of
messages

Network
Traffic

P2P SV-Transfer !((# + %)'()
Parameter Server !(#%')

!('()
!(')

!(# + %)
!(#%)

How to reduce the number of messages in P2P?

Random Multicast

• Send SVs to a random subset of Q (Q<<P) machines
• Reduce number of messages from ! "# to ! "$

Random Multicast (Cont’d)

• Correctness is guaranteed due to the error-tolerant nature of ML.

Mini-Batch

• It is common to use a mini-batch of training examples (instead of one) to compute
updates

• If represented as matrices, the updates computed w.r.t different samples can be
aggregated into a single update matrix to communicate

• Communication cost does not grow with mini-batch size

Training
examples

Update
matrices

Aggregated
matrix

Mini-Batch (Cont’d)

• If represented as SVs, the updates computed w.r.t different samples cannot
be aggregated into a single SV

• The SVs must be transmitted individually
• Communication cost grows linearly with mini-batch size

Training
examples

Sufficient
vectors !", #" !$, #$!%, #% !&, #&

Cannot be aggregated

SV Selection

• Select a subset of “representative” SVs to communicate
• Reduce communication cost
• Does not hurt the correctness of updates
• The aggregated update computed from the selected SVs are close to that

from the entire mini-batch
• The selected SVs can well represent the others

SV Selection (Cont’d)

• Algorithm: joint matrix column subset selection

min$ %
&'(

)
*(&) − .$(&) .$(&)

/
*(&)

0

Outline

• Introduction
• Communication
• Fault tolerance
• Evaluation
• Conclusions

SV-based Representation

• SV-based representation of parameters
• At iteration !, the state"# of the parameter matrix is

"# = "% + ∆"(∆"#……

Initialization Update matrices

+

"# = + ……)%*%+)(*(+)#*#+SV Representation (SVR)

Fault Tolerance

• SV-based checkpoint: save SVs computed in each clock on disk
• Consume little disk bandwidth
• Do not halt computation

• Recovery: transform saved SVs into parameter matrix
• Can rollback to the state of every clock

Outline

• Introduction
• Communication
• Fault tolerance
• Evaluation
• Conclusions

Convergence Speed
Multi-class Logistic Regression (MLR)

Weight matrix: 325K-by-20K

0
5

10
15
20
25

Sp
ark
-2.
0

Go
pa
l

Te
nso

rFl
ow
-1.
0

Bo
sen

MX
Ne
t-0
.7 SV

B

Or
ph
eu
s

Convergence time (hours)

Breakdown of Network Waiting Time and
Computation Time

SV Selection

The number of selected SV pairs

Full batch,
no selection

Random Multicast

The number of destinations each
machine sends messages to

Full broadcast,
no selection

Fault Tolerance

• Random multicast
• Incremental SV

checkpoint
• Periodic centralized

synchronization
• Parameter-replicas

rotation

Conclusions

System Design Algorithm Design

• SV selection
• Using SVs to represent

parameter states
• Automatic identification

of SVs

Communication, fault tolerance, consistency, programming interface

