Unikernels as Processes

Dan Williams, Ricardo Koller (IBM Research)
Martin Lucina (robur.io/Center for the Cultivation of Technology)
Nikhil Prakash (BITS Pilani)




What is a unikernel?

* An application linked with components

 Run on (like) abstraction

e Language-specific
* MirageOS (OCaml)
+ Include0s (C++) S

-
* Legacy-oriented ‘5

* Rumprun (NetBSD-based)
* Can run nginx, redis, node.js, python,etc..

VM

N



Why unikernels?

* Lightweight
* Only what the application needs

* |solated
* VM-isolation is the “gold standard”

* Well suited for the cloud
* Microservices
» Serverless
* NFV

w




Virtualization is a mixed bag

e Good for isolation, but...

* Tooling for VMs not designed for lightweight (e.g., lightVM)
* How do you debug black-box VMs?

e Poor VM performance due to vmexits

* Deployment issues on already-virtualized infrastructure



Why not run unikernels as processes?

* Unikernels are a single process anyway!

* Many benefits as a process |_Process
* Better performance | L
 Common tooling (gdb, perf, etc.) -
* ASLR
* Memory sharing
* Architecture independence

* |solation by limiting process interface to host
* 98% reduction in accessible kernel functions

(93]



Outline

* Where does unikernel isolation come from?
* Unikernels as processes

* |solation evaluation

* Performance evaluation

* Summary



Isolation: definitions and assumptions

* |solation: no cloud user can read/write state
or modify its execution

e Focus on software deficiencies in the host

* Code reachable through interface is a metric for
attack surface

* We trust HW isolation (page tables, etc.)

* We do not consider covert channels, timing
channels or resource starvation

~



Unikernel architecture

e ukvm unikernel
monitor

» Userspace process
* Uses Linux/KVM

e Setup and loading
* Exit handling

|/O devices




Unikernel architecture

* ukvm unikernel
monitor

» Userspace process
* Uses Linux/KVM

* Setup and loading
* Exit handling

@ Set up
1/O fds

|/O devices




Unikernel architecture

e ukvm unikernel
monitor

» Userspace process
* Uses Linux/KVM

e Setup and loading
* Exit handling

Virtual CPU
context

Y=

— |

@ Set up
1/O fds

@ Load
unikernel

|/O devices

=
o



Unikernel architecture

* ukvm unikernel
monitor

» Userspace process
* Uses Linux/KVM

* Setup and loading
* Exit handling

Exit handling

Virtual CPU
context

\\

@ Set up
1/O fds

@ Load
unikernel

|/O devices

=
=



Unikernel isolation comes from the interface

* 10 hypercalls

e 6 forl/O

* Network: packet level
» Storage: block level

* vs. >350 syscalls

walltime
puts
poll
blkinfo
blkwrite
blkread
netinfo
netwrite
netread
halt



Observations

* Unikernels are not kernels!
* No page table management after setup
* No interrupt handlers: cooperative scheduling and poll

* The ukvm monitor doesn’t “do” anything!
* One-to-one mapping between hypercalls and system calls

* |dea: maintain isolation by available to process



Unikernel as process architecture

: modified ukvm
unikernel monitor

» Userspace process

* Uses seccomp to
restrict interface

e Setup and loading

Linux

I/O devices



Unikernel as process architecture

* Tender: modified ukvm
unikernel monitor

» Userspace process

* Uses seccomp to
restrict interface

e Setup and loading

@ Set up
1/O fds

Linux

|/O devices

15



Unikernel as process architecture

* Tender: modified ukvm
unikernel monitor

» Userspace process

* Uses seccomp to
restrict interface

e Setup and loading

@ Set up
1/O fds

@) Load unikernel

Linux

|/O devices

16



Unikernel as process architecture

* Tender: modified ukvm
unikernel monitor

» Userspace process

* Uses seccomp to
restrict interface

e Setup and loading

@ Set up
1/O fds

€ Configure
Y seccomp

@) Load unikernel

Linux

|/O devices

[EY
~



Unikernel as process architecture

* Tender: modified ukvm
unikernel monitor

» Userspace process

* Uses seccomp to
restrict interface

e Setup and loading
* “Exit” handling

9 Exit handling

@ Set up
1/O fds

€ Configure
Y seccomp

@) Load unikernel

1/O

Linux

|/O devices

=
0o



Unikernel isolation comes from the interface

* 10 hypercalls

e 6 forl/O

* Network: packet level
» Storage: block level

* vs. >350 syscalls

walltime
puts
poll
blkinfo
blkwrite
blkread
netinfo
netwrite
netread
halt



Unikernel isolation comes from the interface

* Direct mapping between 10
hypercalls and system
call/resource pairs

e 6 forl/O

* Network: packet level
» Storage: block level

* vs. >350 syscalls

walltime
puts
poll
blkinfo
blkwrite
blkread
netinfo
netwrite
netread
halt

clock_gettime
write

ppoll

pwrite64
pread64

write
read

exit_group

stdout
net _fd

blk_fd
blk_fd

net_fd
net fd



Implementation: nabla V

e Extended Solo5 unikernel
ecosystem and ukvm Guest unikernel

Unikernels

* Prototype supports:
* MirageOS vV

* IncludeOS ' s , "=~ Library
— bindings nabla ukvm - interface
* Rumprun ' _____ — -

Solo5

— HW-
- enforced
I 5 OpenBSD interface
e https://github.com/solo5/solo5 25 | packends
3:

N
[y


https://github.com/solo5/solo5

Measuring isolation: common applications

* Code reachable
through interface is
a metric for attack
surface

 Used kernel ftrace

e Results:
* Processes: 5-6x more
* VMs: 2-3x more

Unique kernel
functions accessed

1600
1400
1200
1000
800
600
400
200

process I
ukvm s

LLLL

/79/}7 ¥

S/ S, ey
()

N
N

~

%
Q@



Measuring isolation: fuzz testing

 Used kernel ftrace

* Used trinity
system call fuzzer to
try to access more of
the kernel

e Results:

* Nabla policy reduces
by 98% over a
“normal” process

Unique kernel functions

700
600
500
400
300
200
100

accept =

nabla
block

30

10

150 200

50 100

250

300



Measuring performance: throughput

* Applications include:
* Web servers
* Python benchmarks
e Redis
* etc.

e Results:

* 101%-245% higher
throughput than ukvm

Normalized throughput

:

200%
180%
160%
140%
120%
100%

80%

no 110

[J ukvm
@ nabla

with 1/0

B QEMU/KVM

=
—

opeulo) Ad

uogjaweyo Ad
qly spou

—obeJiw
goig” Ad

dllH ®
ssaldxa epou

abe| " xuibu

1067 sIpal

1S sIpal

dD1soapnjoul

xuibu

dan~soapnjoul

N
H




Measuring performance: CPU utilization

1V

e vmexits have an effect on o 19
instructions per cycle s @
20
100 =
g
e Experiment with MirageOS 5%
=
web server ~
e Results: Aié“
e 12% reduction in cpu 5 05 nabla —
- . o ukvm —
utilization over ukvm °0 5000 10000 15000 20000

Requests/sec

N
w



Measuring performance: startup time

e Startup time is important

ukvm nabla Drocess
for serverless, NFV 30 l W 30 0 ]
% 20 20 20
S i
L o
o 10 5@%’% 10 _”“lllééﬁww 10 ;,[,J.ﬁ“
e Results: I T T i . oassaddabbtnnl
* Ukvm has 30-370% higher N N N
latency than nabla
Yy o 150 ﬁﬁﬁllﬁﬁlé 150 150
o g
* Mostly due avoiding KVM o 0 mamﬁﬂéﬂ 0
Overheads ! 2 46 810121416 ! 246 810121416 ! 3:;25:1-()-1';1-41‘6

Number of cores



Summary and Next Steps

* Unikernels should run as processes!
* Maintain isolation via thin interface
* Improve performance, etc.

* Next steps: can unikernels as
processes be used to improve
container isolation?

* Nabla containers
 https://nabla-containers.github.io/

|_Process

/=

— |

N
~N



https://nabla-containers.github.io/

_-'V

28



