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Key-value Systems in Internet Services
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• Key-value systems are widely used today 
– Online shopping 
– Social media 
– Cloud storage 
– Big data
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Flash-based Key-value Caching
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• In-flash key-value caches 
– Key-values are stored in commercial flash SSDs 
– Example: Facebook’s McDipper, Twitter’s Fatcache 

• Key features 
– Memcached compatible (SET, GET, DELETE) 
– Advantages: low cost and high performance 

• McDipper: reduce 90% deployed servers, 90% GETs < 1ms*

Speed Power Cost Capacity Persistency
DRAM High High High Low No
Flash Low- Low+ Low+ High+ Yes+

  *https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
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Scalability Challenge

• High Index-to-data Ratio
– Key-value cache is dominated by small items (90% < 500 bytes)
– Key-value mapping entry size: 44 bytes in Fatcache 

!6Atikoglu et al., “Workload Analysis of A Large-scale Key-value Store”, in 
SIGMETRICS’12.
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Scalability Challenge

• High Index-to-data Ratio
– Key-value cache is dominated by small items (90% < 500 bytes)
– Key-value mapping entry size: 44 bytes in Fatcache 

• Flash memory vs. DRAM memory
– Capacity: Flash cache is 10-100x larger than memory-based cache
– Price: 1-TB flash ($200-500), 1-TB DRAM (>$10,000)
– Growth: flash (50-60% per year), DRAM (25-40% per year)
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300 
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DRAM Flash
Assume average key-value size is 300 bytesA technical dilemma: We have a lot of flash space to cache 

the data, but we don’t have enough DRAM to index the data 
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Evolution of Key-value Caching

• Leverage the strong locality to differentiate hot and cold mappings 
– Hold the most popular mappings in a small in-DRAM mapping structure 
– Leave the majority mappings in a large in-flash mapping structure
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Outline

• Cascade mapping design 
• Optimizations 
• Evaluation results 
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Tier 3: Dual-mode Hash Table

    Memory & I/O efficiency both achieved 
– Only one set of dynamic buffers 
– Write to active list first 
– Reorganize into inactive list  
– Combines the advantages
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Optimization Techniques

• Partition the hash space to create multiple demotion I/O streams 
• Adopt a memory-efficient CLOCK-based demotion policy 
• Organize an array of direct mapping blocks in the FIFO order 
• Parallel batch search to quickly complete a one-to-one scan 
• Use a dual-mode hash table for both memory and I/O efficiency 
• A jump list by using Bloom filters to skip impossible blocks 
• Make the FIFO-based eviction policy locality aware 
• Use slab sequence counter to realize zero-I/O demapping 
• Leverage the FIFO nature of slabs for efficient crash recovery
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Hash bucket 

Bloom filters are used to avoid unnecessary tier-3 I/Os 
– Bloom filters are stored in flash together with regular mapping blocks 
– Indicate whether a mapping can be found within next several blocks 
– If returns negative, jump to the next Bloom filter block

1 0 0 1 1 1 1 1

A          B         C     Bloom filter: to test whether an element is in a set 
– A query returns either possibly in set or definitely not in set 
– False positive is possible, but false negative is impossible 
– Elements can be added to the set, but not removed

One single long list Several short lists connected by hops           
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• GC is a must-have for key-value systems
– To reclaim flash space
– To organize large sequential writes

• Traditional: Free up space immediately
– Erase entire victim slab based on FIFO order
– Reclaim space quickly, but may delete hot data

• Our solution: Keep hot data in cache
– If a k-v item’s mapping is in tier 1, indicating it is hot data
– Rewrite hot data to a new slab, then erase victim slab

• Adaptive two-phase GC
– If free flash space is too low, perform fast space reclaim
– Keep hot data when system under moderate pressure

Victim slab
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Experimental Setup

• Implementation 
– SlickCache: 3,800 lines of C code added to Twitter’s Fatcache 

• Hardware environment 
– Lenovo ThinkServers: 4-core Intel Xeon 3.4 GHz with 16 GB DRAM 
– 240-GB Intel 730 SSD as cache device 
– 280-GB Intel Optane 900P SSD as swapping device 
– 7,200 RPM Seagate 2-TB HDD as database device 

• Software environment 
– Ubuntu 16.04 with Linux kernel 4.12 and Ext4 file system 
– MongoDB 3.4 for backend database 

• Workloads 
– Yahoo! Cloud Serving Benchmark (YCSB) 
– Popular distributions: Hotspot, Zipfian, and Normal 
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Evaluation Results
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Comparison with Fatcache and system swapping 
Fatcache-Swap-Flash and Fatcache-Swap-Optane are both configured with 10% of 
physical memory, allowed to swap on flash SSD and Optane SSD respectively.

2x

7x



Evaluation Results
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85%

Cache effectiveness (Fixed cache size) 
SlickCache only uses 10% of the memory used by Fatcache, achieves comparable performance.  
SlickCache-GC increases throughput by up to 85% due to the optimized GC policy.  
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Evaluation Results

125x

Cache effectiveness (Fixed memory size) 
SlickCache is able to index a 10 times larger flash cache with the same amount of memory, 
which in turn increases the hit ratio by up to 8.2 times and the throughput by up to 125 times. 



Conclusions
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Cascade Mapping for flash-based key-value caching 

• A hierarchical mapping structure for flash-based key-value cache 

• A set of optimizations to improve performance 

• Use less memory while performs better than current design
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Thanks!  
And Questions?


