
Cascade Mapping: Optimizing Memory Efficiency
for Flash-based Key-value Caching

Kefei Wang and Feng Chen
Louisiana State University

SoCC '18 Carlsbad, CA

Key-value Systems in Internet Services

!2

• Key-value systems are widely used today
– Online shopping
– Social media
– Cloud storage
– Big data

Key Value
Product_ID Product_Name

URL Image

Key-value Caching

!3

“First line of defense” in today’s Internet service
• High throughput
• Low latency

Operations:
SET
GET
DELETE

Web Server

Cache ServerDatabase
Server

Client requests

Key-value Caching

!3

“First line of defense” in today’s Internet service
• High throughput
• Low latency

Operations:
SET
GET
DELETE

Web Server

Cache ServerDatabase
Server

Client requests

Hit

Key-value Caching

!3

“First line of defense” in today’s Internet service
• High throughput
• Low latency

Operations:
SET
GET
DELETE

Web Server

Cache ServerDatabase
Server

Client requests

Miss Hit

Key-value Caching

!3

“First line of defense” in today’s Internet service
• High throughput
• Low latency

Operations:
SET
GET
DELETE

Web Server

Cache ServerDatabase
Server

Client requests

Miss Hit

Flash-based Key-value Caching

!4

• In-flash key-value caches
– Key-values are stored in commercial flash SSDs
– Example: Facebook’s McDipper, Twitter’s Fatcache

• Key features
– Memcached compatible (SET, GET, DELETE)
– Advantages: low cost and high performance

• McDipper: reduce 90% deployed servers, 90% GETs < 1ms*

Speed Power Cost Capacity Persistency
DRAM High High High Low No
Flash Low- Low+ Low+ High+ Yes+

 *https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/

Flash-based Key-value Caching

!5

Key-value slabs

DRAM Memory

Hash-based mapping

Data stored in flash and all the mappings in DRAM

Flash SSD

Flash-based Key-value Caching

!5

Key-value slabs

DRAM Memory

Hash-based mapping

Slab

Data stored in flash and all the mappings in DRAM

Flash SSD

Flash-based Key-value Caching

!5

Key-value slabs

DRAM Memory

Hash-based mapping

MD[20]
Slab_ID
Slot_ID
Expiry

Slab
Slot

Data stored in flash and all the mappings in DRAM

Flash SSD

Flash-based Key-value Caching

!5

Key-value slabs

DRAM Memory

Hash-based mapping

MD[20]
Slab_ID
Slot_ID
Expiry

Slab
Slot

Data stored in flash and all the mappings in DRAM

Flash SSD

Scalability Challenge

• High Index-to-data Ratio
– Key-value cache is dominated by small items (90% < 500 bytes)
– Key-value mapping entry size: 44 bytes in Fatcache

!6Atikoglu et al., “Workload Analysis of A Large-scale Key-value Store”, in
SIGMETRICS’12.

Scalability Challenge

• High Index-to-data Ratio
– Key-value cache is dominated by small items (90% < 500 bytes)
– Key-value mapping entry size: 44 bytes in Fatcache

!6Atikoglu et al., “Workload Analysis of A Large-scale Key-value Store”, in
SIGMETRICS’12.

< 500 bytes

Scalability Challenge

• High Index-to-data Ratio
– Key-value cache is dominated by small items (90% < 500 bytes)
– Key-value mapping entry size: 44 bytes in Fatcache

• Flash memory vs. DRAM memory
– Capacity: Flash cache is 10-100x larger than memory-based cache
– Price: 1-TB flash ($200-500), 1-TB DRAM (>$10,000)
– Growth: flash (50-60% per year), DRAM (25-40% per year)

!6Atikoglu et al., “Workload Analysis of A Large-scale Key-value Store”, in
SIGMETRICS’12.

< 500 bytes

Scalability Challenge

• High Index-to-data Ratio
– Key-value cache is dominated by small items (90% < 500 bytes)
– Key-value mapping entry size: 44 bytes in Fatcache

• Flash memory vs. DRAM memory
– Capacity: Flash cache is 10-100x larger than memory-based cache
– Price: 1-TB flash ($200-500), 1-TB DRAM (>$10,000)
– Growth: flash (50-60% per year), DRAM (25-40% per year)

!6Atikoglu et al., “Workload Analysis of A Large-scale Key-value Store”, in
SIGMETRICS’12.

< 500 bytes

150
GB

1 TB

DRAM Flash
Assume average key-value size is 300 bytes

Scalability Challenge

• High Index-to-data Ratio
– Key-value cache is dominated by small items (90% < 500 bytes)
– Key-value mapping entry size: 44 bytes in Fatcache

• Flash memory vs. DRAM memory
– Capacity: Flash cache is 10-100x larger than memory-based cache
– Price: 1-TB flash ($200-500), 1-TB DRAM (>$10,000)
– Growth: flash (50-60% per year), DRAM (25-40% per year)

!6Atikoglu et al., “Workload Analysis of A Large-scale Key-value Store”, in
SIGMETRICS’12.

< 500 bytes

300
GB

2 TB

DRAM Flash
Assume average key-value size is 300 bytes

Scalability Challenge

• High Index-to-data Ratio
– Key-value cache is dominated by small items (90% < 500 bytes)
– Key-value mapping entry size: 44 bytes in Fatcache

• Flash memory vs. DRAM memory
– Capacity: Flash cache is 10-100x larger than memory-based cache
– Price: 1-TB flash ($200-500), 1-TB DRAM (>$10,000)
– Growth: flash (50-60% per year), DRAM (25-40% per year)

!6Atikoglu et al., “Workload Analysis of A Large-scale Key-value Store”, in
SIGMETRICS’12.

< 500 bytes

300
GB

2 TB

DRAM Flash
Assume average key-value size is 300 bytesA technical dilemma: We have a lot of flash space to cache

the data, but we don’t have enough DRAM to index the data

Evolution of Key-value Caching

!7

key

Key-value Slabs (DRAM)

Mapping Table (DRAM)

Evolution of Key-value Caching

!7

key

Key-value Slabs (DRAM)

Mapping Table (DRAM)

Key-value Slabs (Flash)

key

Mapping Table (DRAM)

Evolution of Key-value Caching

!7

key

Key-value Slabs (DRAM)

Mapping Table (DRAM) Mappings
(Flash)

Key-value Slabs (Flash)

Mappings
(DRAM)

key

Key-value Slabs (Flash)

key

Mapping Table (DRAM)

Evolution of Key-value Caching

!7

key

Key-value Slabs (DRAM)

Mapping Table (DRAM) Mappings
(Flash)

Key-value Slabs (Flash)

Mappings
(DRAM)

key

Zero Flash I/O
Key-value Slabs (Flash)

key

Mapping Table (DRAM)

Evolution of Key-value Caching

!7

key

Key-value Slabs (DRAM)

Mapping Table (DRAM) Mappings
(Flash)

Key-value Slabs (Flash)

Mappings
(DRAM)

key

Zero Flash I/O One Flash I/O
Key-value Slabs (Flash)

key

Mapping Table (DRAM)

Evolution of Key-value Caching

• Leverage the strong locality to differentiate hot and cold mappings
– Hold the most popular mappings in a small in-DRAM mapping structure
– Leave the majority mappings in a large in-flash mapping structure

!7

key

Key-value Slabs (DRAM)

Mapping Table (DRAM) Mappings
(Flash)

Key-value Slabs (Flash)

Mappings
(DRAM)

key

Zero Flash I/O One Flash I/O N Flash I/Os
Key-value Slabs (Flash)

key

Mapping Table (DRAM)

Outline

• Cascade mapping design
• Optimizations
• Evaluation results
• Conclusions

!8

Cascade Mapping

!9

 Hierarchical Mapping Structure
– Tier 1 – Hot mappings

• Hash index based search in memory
– Tier 2 – Warm mappings

• High-bandwidth quick scan in flash
– Tier 3 – Cold mappings

• Efficient linked-list structure in flash

Cascade Mapping

!9

Tier 2

Tier 3

Tier 1Memory space

Flash space

 Hierarchical Mapping Structure
– Tier 1 – Hot mappings

• Hash index based search in memory
– Tier 2 – Warm mappings

• High-bandwidth quick scan in flash
– Tier 3 – Cold mappings

• Efficient linked-list structure in flash

Cascade Mapping

!9

Tier 2

Tier 3

Tier 1Memory space

Flash space

 Hierarchical Mapping Structure
– Tier 1 – Hot mappings

• Hash index based search in memory
– Tier 2 – Warm mappings

• High-bandwidth quick scan in flash
– Tier 3 – Cold mappings

• Efficient linked-list structure in flash

Key

Cascade Mapping

!9

Tier 2

Tier 3

Tier 1Memory space

Flash space

 Hierarchical Mapping Structure
– Tier 1 – Hot mappings

• Hash index based search in memory
– Tier 2 – Warm mappings

• High-bandwidth quick scan in flash
– Tier 3 – Cold mappings

• Efficient linked-list structure in flash

Key

Cascade Mapping

!9

Tier 2

Tier 3

Tier 1Memory space

Flash space

 Hierarchical Mapping Structure
– Tier 1 – Hot mappings

• Hash index based search in memory
– Tier 2 – Warm mappings

• High-bandwidth quick scan in flash
– Tier 3 – Cold mappings

• Efficient linked-list structure in flash

Key

Cascade Mapping

!9

Tier 2

Tier 3

Tier 1Memory space

Flash space

 Hierarchical Mapping Structure
– Tier 1 – Hot mappings

• Hash index based search in memory
– Tier 2 – Warm mappings

• High-bandwidth quick scan in flash
– Tier 3 – Cold mappings

• Efficient linked-list structure in flash

Key

Cascade Mapping

!9

Tier 2

Tier 3

Tier 1Memory space

Flash space

 Hierarchical Mapping Structure
– Tier 1 – Hot mappings

• Hash index based search in memory
– Tier 2 – Warm mappings

• High-bandwidth quick scan in flash
– Tier 3 – Cold mappings

• Efficient linked-list structure in flash

Key-value slabs

Key

Tier 1: A Mapping Table in Memory

!10

Bucket 0

Key
Hash

…
Bucket 1

Bucket n

P
ar

tit
io

n
1

P
ar

tit
io

n
n

…
 …

Virtual buffer

Demote to Tier 2

Tier 1: A Mapping Table in Memory

!10

Bucket 0

Key
Hash

…
Bucket 1

Bucket n

P
ar

tit
io

n
1

P
ar

tit
io

n
n

…
 …

Virtual buffer

Demote to Tier 2

Tier 1: A Mapping Table in Memory

!10

Bucket 0

Key
Hash

…
Bucket 1

Bucket n

P
ar

tit
io

n
1

P
ar

tit
io

n
n

…
 …

Virtual buffer

Demote to Tier 2

Tier 1: A Mapping Table in Memory

!10

Bucket 0

Key
Hash

…
Bucket 1

Bucket n

P
ar

tit
io

n
1

P
ar

tit
io

n
n

…
 …

Virtual buffer

Demote to Tier 2

Tier 1: A Mapping Table in Memory

!10

Bucket 0

Key
Hash

…
Bucket 1

Bucket n

P
ar

tit
io

n
1

P
ar

tit
io

n
n

…
 …

Virtual buffer

Demote to Tier 2

Tier 1: A Mapping Table in Memory

!10

Bucket 0

Key
Hash

…
Bucket 1

Bucket n

P
ar

tit
io

n
1

P
ar

tit
io

n
n

…
 …

Virtual buffer

Demote to Tier 2

Tier 1: A Mapping Table in Memory

!10

Bucket 0

Key
Hash

…
Bucket 1

Bucket n

P
ar

tit
io

n
1

P
ar

tit
io

n
n

…
 …

Virtual buffer

Demote to Tier 2

Tier 1: A Mapping Table in Memory

!10

Bucket 0

Key
Hash

…
Bucket 1

Bucket n

P
ar

tit
io

n
1

P
ar

tit
io

n
n

…
 …

Virtual buffer

Demote to Tier 2
 0

 20

 40

 60

 80

 100

 4 6 8 10 12 14 16 18 20

Hi
t R

at
io

 (%
)

Ratio of Tier 1 (%)

CLOCK
LRU
FIFO

Tier 2: Direct Indexing in Flash

• Direct mapping block
– A set of mapping entries demoted from Tier 1

!11

Tier 2: Direct Indexing in Flash

• Direct mapping block
– A set of mapping entries demoted from Tier 1

!11

Tier 2: Direct Indexing in Flash

• Direct mapping block
– A set of mapping entries demoted from Tier 1

!11

Tier 2: Direct Indexing in Flash

• Direct mapping block
– A set of mapping entries demoted from Tier 1

!11

T T T FOUND

Serial Search: 3x T

Tier 2: Direct Indexing in Flash

• Direct mapping block
– A set of mapping entries demoted from Tier 1

!11

T T T FOUND

Serial Search: 3x T
Chen et al., “Internal Parallelism of Flash-based Solid State Drives”, ACM Transactions on Storage, 12:3, May 2016

Tier 2: Direct Indexing in Flash

• Direct mapping block
– A set of mapping entries demoted from Tier 1

!11

T T T FOUND

Serial Search: 3x T
Chen et al., “Internal Parallelism of Flash-based Solid State Drives”, ACM Transactions on Storage, 12:3, May 2016

Tier 2: Direct Indexing in Flash

• Direct mapping block
– A set of mapping entries demoted from Tier 1

• An FIFO array of blocks
– The most recent version is always in the latest position

• Parallelized Batch Search
– Parallel I/Os to load multiple mapping blocks into memory
– Scan and find the most recent version of the data in one I/O time

!11

T T T FOUND

Serial Search: 3x T
Chen et al., “Internal Parallelism of Flash-based Solid State Drives”, ACM Transactions on Storage, 12:3, May 2016

Tier 2: Direct Indexing in Flash

• Direct mapping block
– A set of mapping entries demoted from Tier 1

• An FIFO array of blocks
– The most recent version is always in the latest position

• Parallelized Batch Search
– Parallel I/Os to load multiple mapping blocks into memory
– Scan and find the most recent version of the data in one I/O time

!11

T T T FOUND

Serial Search: 3x T

FIFO

B
lo

ck
 2

B
lo

ck
 4

B
lo

ck
 3

B
lo

ck
 1

Chen et al., “Internal Parallelism of Flash-based Solid State Drives”, ACM Transactions on Storage, 12:3, May 2016

Tier 2: Direct Indexing in Flash

• Direct mapping block
– A set of mapping entries demoted from Tier 1

• An FIFO array of blocks
– The most recent version is always in the latest position

• Parallelized Batch Search
– Parallel I/Os to load multiple mapping blocks into memory
– Scan and find the most recent version of the data in one I/O time

!11

T T T FOUND

Serial Search: 3x T

FIFO

B
lo

ck
 2

B
lo

ck
 4

B
lo

ck
 3

B
lo

ck
 1

T

FOUND

Parallel Search: 1x TChen et al., “Internal Parallelism of Flash-based Solid State Drives”, ACM Transactions on Storage, 12:3, May 2016

Tier 3: Hash Table List Designs

!12

Bucket 0

Bucket 1

Bucket 1023

… … …

Tier 3: Hash Table List Designs

!12

Bucket 0

Bucket 1

Bucket 1023

… … …

Memory buffers

Tier 3: Hash Table List Designs

!12

Bucket 0

Bucket 1

Bucket 1023

• “Narrow” hash table
– Long list to walk through
– Need less memory buffers (e.g., 128MB)

… … …

Memory buffers

Tier 3: Hash Table List Designs

!12

Bucket 0

Bucket 1

Bucket 1

Bucket 1048575

Bucket 1023

Bucket 0

• “Narrow” hash table
– Long list to walk through
– Need less memory buffers (e.g., 128MB)

… … …

… …
… …
… …
… …

Memory buffers

Tier 3: Hash Table List Designs

!12

Bucket 0

Bucket 1

Bucket 1

Bucket 1048575

Bucket 1023

Bucket 0

• “Narrow” hash table
– Long list to walk through
– Need less memory buffers (e.g., 128MB)

… … …

… …
… …
… …
… …

Memory buffers

Memory efficiency v.s. I/O efficiency

Tier 3: Hash Table List Designs

!12

Bucket 0

Bucket 1

Bucket 1

Bucket 1048575

Bucket 1023

Bucket 0

• “Narrow” hash table
– Long list to walk through
– Need less memory buffers (e.g., 128MB)

• “Wide” hash table
– Short list to walk through
– Need more memory buffers (e.g., 128GB)

… … …

… …
… …
… …
… …

Memory buffers

Memory efficiency v.s. I/O efficiency

Tier 3: Dual-mode Hash Table

 Memory & I/O efficiency both achieved
– Only one set of dynamic buffers
– Write to active list first
– Reorganize into inactive list
– Combines the advantages

!13

Bucket 0

Bucket 1

Bucket 1023

… …

Bucket 1

Bucket 1048575

Bucket 0

… …

… …
… …
… …

Bucket 1023

D
ed

ic
at

ed
 b

uf
fe

rs

W
rit

es

Active table

Inactive table

Tier 3: Dual-mode Hash Table

 Memory & I/O efficiency both achieved
– Only one set of dynamic buffers
– Write to active list first
– Reorganize into inactive list
– Combines the advantages

!13

Bucket 0

Bucket 1

Bucket 1023

… …

Bucket 1

Bucket 1048575

Bucket 0

… …

… …
… …
… …

Length limit

Bucket 1023

D
ed

ic
at

ed
 b

uf
fe

rs

W
rit

es

Active table

Inactive table

Tier 3: Dual-mode Hash Table

 Memory & I/O efficiency both achieved
– Only one set of dynamic buffers
– Write to active list first
– Reorganize into inactive list
– Combines the advantages

!13

Bucket 0

Bucket 1

Bucket 1023

… …

Bucket 1

Bucket 1048575

Bucket 0

… …

… …
… …
… …

Length limit

Bucket 1023

D
ed

ic
at

ed
 b

uf
fe

rs

W
rit

es

Active table

Inactive table

Tier 3: Dual-mode Hash Table

 Memory & I/O efficiency both achieved
– Only one set of dynamic buffers
– Write to active list first
– Reorganize into inactive list
– Combines the advantages

!13

Bucket 0

Bucket 1

Bucket 1023

… …

Bucket 1

Bucket 1048575

Bucket 0

… …

… …
… …
… …

Length limit

Bucket 1023

D
yn

am
ic

 b
uf

fe
rs

D
ed

ic
at

ed
 b

uf
fe

rs

W
rit

es

Active table

Inactive table

Tier 3: Dual-mode Hash Table

 Memory & I/O efficiency both achieved
– Only one set of dynamic buffers
– Write to active list first
– Reorganize into inactive list
– Combines the advantages

!13

Bucket 0

Bucket 1

Bucket 1023

… …

Bucket 1

Bucket 1048575

Bucket 0

… …

… …
… …
… …

Length limit

Bucket 1023

C
om

pa
ct

io
n

D
yn

am
ic

 b
uf

fe
rs

D
ed

ic
at

ed
 b

uf
fe

rs

W
rit

es

Active table

Inactive table

Tier 3: Dual-mode Hash Table

 Memory & I/O efficiency both achieved
– Only one set of dynamic buffers
– Write to active list first
– Reorganize into inactive list
– Combines the advantages

!13

Bucket 0

Bucket 1

Bucket 1023

… …

Bucket 1

Bucket 1048575

Bucket 0

… …

… …
… …
… …

Length limit

Bucket 1023

C
om

pa
ct

io
n

D
yn

am
ic

 b
uf

fe
rs

D
ed

ic
at

ed
 b

uf
fe

rs

W
rit

es

Active table

Inactive table

Outline

• Cascade mapping design
• Optimizations
• Evaluation results
• Conclusions

!14

Optimization Techniques

• Partition the hash space to create multiple demotion I/O streams
• Adopt a memory-efficient CLOCK-based demotion policy
• Organize an array of direct mapping blocks in the FIFO order
• Parallel batch search to quickly complete a one-to-one scan
• Use a dual-mode hash table for both memory and I/O efficiency
• A jump list by using Bloom filters to skip impossible blocks
• Make the FIFO-based eviction policy locality aware
• Use slab sequence counter to realize zero-I/O demapping
• Leverage the FIFO nature of slabs for efficient crash recovery

!15

Optimization Techniques

• Partition the hash space to create multiple demotion I/O streams
• Adopt a memory-efficient CLOCK-based demotion policy
• Organize an array of direct mapping blocks in the FIFO order
• Parallel batch search to quickly complete a one-to-one scan
• Use a dual-mode hash table for both memory and I/O efficiency
• A jump list by using Bloom filters to skip impossible blocks
• Make the FIFO-based eviction policy locality aware
• Use slab sequence counter to realize zero-I/O demapping
• Leverage the FIFO nature of slabs for efficient crash recovery

!16

Optimization: Jump List

!17

Hash bucket

One single long list

Optimization: Jump List

!17

1 0 0 1 1 1 1 1

A B C Bloom filter: to test whether an element is in a set
– A query returns either possibly in set or definitely not in set
– False positive is possible, but false negative is impossible
– Elements can be added to the set, but not removed

Hash bucket

One single long list

Optimization: Jump List

!17

1 0 0 1 1 1 1 1

A B C Bloom filter: to test whether an element is in a set
– A query returns either possibly in set or definitely not in set
– False positive is possible, but false negative is impossible
– Elements can be added to the set, but not removed

One single long list

Optimization: Jump List

!17

Hash bucket

Bloom filters are used to avoid unnecessary tier-3 I/Os
– Bloom filters are stored in flash together with regular mapping blocks
– Indicate whether a mapping can be found within next several blocks
– If returns negative, jump to the next Bloom filter block

1 0 0 1 1 1 1 1

A B C Bloom filter: to test whether an element is in a set
– A query returns either possibly in set or definitely not in set
– False positive is possible, but false negative is impossible
– Elements can be added to the set, but not removed

One single long list Several short lists connected by hops

Optimization: Garbage Collection

!18

• GC is a must-have for key-value systems
– To reclaim flash space
– To organize large sequential writes

Optimization: Garbage Collection

!18

• GC is a must-have for key-value systems
– To reclaim flash space
– To organize large sequential writes

Victim slab

Optimization: Garbage Collection

!18

• GC is a must-have for key-value systems
– To reclaim flash space
– To organize large sequential writes

• Traditional: Free up space immediately
– Erase entire victim slab based on FIFO order
– Reclaim space quickly, but may delete hot data

Victim slab

Optimization: Garbage Collection

!18

• GC is a must-have for key-value systems
– To reclaim flash space
– To organize large sequential writes

• Traditional: Free up space immediately
– Erase entire victim slab based on FIFO order
– Reclaim space quickly, but may delete hot data

Victim slab

Optimization: Garbage Collection

!18

• GC is a must-have for key-value systems
– To reclaim flash space
– To organize large sequential writes

• Traditional: Free up space immediately
– Erase entire victim slab based on FIFO order
– Reclaim space quickly, but may delete hot data

Victim slab

Optimization: Garbage Collection

!18

• GC is a must-have for key-value systems
– To reclaim flash space
– To organize large sequential writes

• Traditional: Free up space immediately
– Erase entire victim slab based on FIFO order
– Reclaim space quickly, but may delete hot data

• Our solution: Keep hot data in cache
– If a k-v item’s mapping is in tier 1, indicating it is hot data
– Rewrite hot data to a new slab, then erase victim slab

Victim slab

Optimization: Garbage Collection

!18

• GC is a must-have for key-value systems
– To reclaim flash space
– To organize large sequential writes

• Traditional: Free up space immediately
– Erase entire victim slab based on FIFO order
– Reclaim space quickly, but may delete hot data

• Our solution: Keep hot data in cache
– If a k-v item’s mapping is in tier 1, indicating it is hot data
– Rewrite hot data to a new slab, then erase victim slab

Victim slab

Optimization: Garbage Collection

!18

• GC is a must-have for key-value systems
– To reclaim flash space
– To organize large sequential writes

• Traditional: Free up space immediately
– Erase entire victim slab based on FIFO order
– Reclaim space quickly, but may delete hot data

• Our solution: Keep hot data in cache
– If a k-v item’s mapping is in tier 1, indicating it is hot data
– Rewrite hot data to a new slab, then erase victim slab

Victim slab

Optimization: Garbage Collection

!18

• GC is a must-have for key-value systems
– To reclaim flash space
– To organize large sequential writes

• Traditional: Free up space immediately
– Erase entire victim slab based on FIFO order
– Reclaim space quickly, but may delete hot data

• Our solution: Keep hot data in cache
– If a k-v item’s mapping is in tier 1, indicating it is hot data
– Rewrite hot data to a new slab, then erase victim slab

Victim slab

Optimization: Garbage Collection

!18

• GC is a must-have for key-value systems
– To reclaim flash space
– To organize large sequential writes

• Traditional: Free up space immediately
– Erase entire victim slab based on FIFO order
– Reclaim space quickly, but may delete hot data

• Our solution: Keep hot data in cache
– If a k-v item’s mapping is in tier 1, indicating it is hot data
– Rewrite hot data to a new slab, then erase victim slab

• Adaptive two-phase GC
– If free flash space is too low, perform fast space reclaim
– Keep hot data when system under moderate pressure

Victim slab

Outline

• Cascade mapping design
• Optimizations
• Evaluation results
• Conclusions

!19

Experimental Setup

• Implementation
– SlickCache: 3,800 lines of C code added to Twitter’s Fatcache

• Hardware environment
– Lenovo ThinkServers: 4-core Intel Xeon 3.4 GHz with 16 GB DRAM
– 240-GB Intel 730 SSD as cache device
– 280-GB Intel Optane 900P SSD as swapping device
– 7,200 RPM Seagate 2-TB HDD as database device

• Software environment
– Ubuntu 16.04 with Linux kernel 4.12 and Ext4 file system
– MongoDB 3.4 for backend database

• Workloads
– Yahoo! Cloud Serving Benchmark (YCSB)
– Popular distributions: Hotspot, Zipfian, and Normal

!20

Evaluation Results

!21

Comparison with Fatcache and system swapping
Fatcache-Swap-Flash and Fatcache-Swap-Optane are both configured with 10% of
physical memory, allowed to swap on flash SSD and Optane SSD respectively.

2x

7x

Evaluation Results

!22

85%

Cache effectiveness (Fixed cache size)
SlickCache only uses 10% of the memory used by Fatcache, achieves comparable performance.
SlickCache-GC increases throughput by up to 85% due to the optimized GC policy.

!23

Evaluation Results

125x

Cache effectiveness (Fixed memory size)
SlickCache is able to index a 10 times larger flash cache with the same amount of memory,
which in turn increases the hit ratio by up to 8.2 times and the throughput by up to 125 times.

Conclusions

!24

Cascade Mapping for flash-based key-value caching

• A hierarchical mapping structure for flash-based key-value cache

• A set of optimizations to improve performance

• Use less memory while performs better than current design

!25

Thanks!
And Questions?

