Multi-Query Optimization in
Wide-Area Streaming Analytics

Albert Jonathan, Abhishek Chandra, Jon Weissman

University of Minnesota

Driven to Discover Distributed Computing Systems Group == ===

M UNIVERSITY OF MINNESOTA DCSG ===::"

Wide-Area Streaming Analytics

Real-time analysis over large continuous data streams generated at the edge

Trending topic analysis

Location-based advertisement

Meeting Internet service SLAs
Billing dashboard

Real-time traffic control

Live video analysis

WAN Resource Demand vs. Constraints

* High resource demand:
 Twitter, on average 6000 tweets/second (2016)
* Facebook log updates, 25TB/day (2009)
* Video surveillance, millions of cameras around large cities, ~3Mbps/camera (2009)

° WAN constra | nts: 30!(5)02 Bandwidth Distribution 350ECZ Latency Distribution
» Scarce bandwidth T R z:z o
. g 200 g
« High latency = = :15X - ?zz |32X
* Highly heterogeneous % 100 | g :
* Expensive ($$9) T o . !
0 S S I AR o P e & e e e

Pair-wise Linkg Pair-wise Links
(sorted on bandwidth) (sorted on latency)

Optimizing Queries Under WAN Constraints

* Existing approaches optimize each query individually
* Delay & WAN Traffic [Heintz et al., HPDC'15]
* Delay & Accuracy/Quality [JetStream-NSDI’'14, Heintz et al., SoCC'16, AWStream-SIGCOMM’ 18]

* Multi-tenancy of streaming systems

“In production environment, the same streaming system is used by many teams.”
* Social network: trending topic, sentiment analysis, advertisement, campaign
* CDN Logs: monitored for performance optimization, debugging, billing

* Optimizing multiple queries to handle WAN constraints

Optimizing Multiple Streaming Queries in
Wide-Area Settings

* Borrow the idea of multi-query optimization (MQO) from DBMS

* |dentify commonalities (data, work) between queries — remove redundancies

» Adaptation for streaming analytics workload
* Long-running (24x7) — incrementally optimize at runtime
* Latency sensitive — minimal interruption to existing queries

* Adaptation to wide-area settings
« Heterogeneous, limited bandwidth ~ — WAN-awareness

Benefit of MQO in Wide-Area Streaming Analytics

(o)

Query 1:
SELECT Time,
FROM Src.US

GROUP BY WINDOW (
HAVING COUNT (*)

Topic, COUNT (*)

, Src.EU, Src.Asia
Time.Minutes (1)), Topic
> 100

Stream rate: 5 MBps

_

\ / California

[0
/ \ @ src

~

10 MBps

@ coe:

Source.Asia

20 MBps

(@

Source.US

59,

MBps @ MBps e
O

Query 2:
SELECT Time, AdInfo.Campaign
FROM (SELECT Time, Topic
FROM Src.US, Src.EU
GROUP BY WINDOW (Time.Minutes (1)), Topic
HAVING COUNT (*) > 100) AS Tweet, AdInfo
WHERE AdInfo.Topic = Tweet.Topic

Bandwidth Usage: 40+35=36 MBps
(London \ Frankfurt

ch
0o @ 0 ©2©

Src

AdInfo

20 MBps

(@

Source.EU

Recovery
Manager

Query
DAG -~

Query Optimizer]4_

Existing
DAGs

APK®

S*Jirgd Optimized WAN
Plan Info
Manager

_—__\

)

WAN
Monitor

Job Scheduler J‘i

Register

Geo-distributed sites

7’

am s e e e e - -

Operator Sharing
*Vertices can share operators iff:
* They share the same stream operator
« All of their inputs are the same o
* Eliminate redundancies in ’;
* Input streams p——
* Data processing
» Output streams i
» Strict sharing requirement : @

e Less common for vertices that are further downstream

(Partial) Input-Only Sharing

* Relax the strict-equality constraints of Operator Sharing

* Operators do not have to be the same
* Can share partial input streams oo >@
* Router operator

* Does not perform any data transformation
» Routes input streams to multiple vertices @

within a site/node

* Only added to operators with remote inpu

Same-site/node deployment

=) "

S
=50

= e

* Eliminate redundant input streams transmitted over the WAN

e

o)

Sharing With Multiple Queries Incrementally

*Which queries to share?
 Query-centric: maximum similarity score — limit to 1 query
* Vertex-centric: traverse vertices topologically, may be shared with multiple queries

* Incremental sharing —

O @ © Q DO ®® ®

WAN-Aware Execution Sharing

* Why MQO needs network awareness?

20 MBps
Site 1. . \ .
_ J
20 MBps

* WAN-aware MQO prevents bandwidth contention

(v,v1) :
Input sharing

L 4
7
.“‘ "Ten
'Y *
o *”
-

P
’..‘.

(v,vy):

available bandwidth —— 2 MBps

“ar

Site 2

.

L}
........ -

Operator sharing

10 MBps

Vv's input

rate /

4

L
I, N I,

10 MBps
5 MBps

0y, # 0,, = 5 MBps

\

v's output
rate

WAN-Aware Task Deployment

*Vertices that exhibit commonalities:
* Consider the sharing opportunities identitied by the Query Optimizer

*Vertices that do not exhibit commonalities:
* Local inputs — same site/node deployment
* WAN-aware placement: jointly optimize latency and bandwidth

Implementation

» Sana prototype implementation on Apache Flink
* WAN monitoring module
* WAN-aware multi-query optimization
* WAN-aware task placement
« Managing execution states of shared queries

* Router operators are proactively added

* Only added to vertices that consume remote input streams
* Prevent suspending existing executions

Experiment Setup

* Deployment on14 Amazon EC2 data centers

» Datasets & Queries
* Real Twitter trace (scaled to ~6000-8000 tweets/second)
 Distributed across 6 sites based on coordinates
* Twitter Analytics Queries: Tweet statistics, Top-k analysis, Sentiment analysis, System metrics

* Baseline Comparison:
* Default: WAN-agnostic, No Sharing
« MQO: WAN-agnostic, Sharing
« NET: WAN-aware, No Sharing
« Sana: WAN-aware, Sharing

WAN Bandwidth

System Comparison

WAN bandwidth consumption Throughput Latency
7000 120
m o N
é— g 6000 >8\°, 100
(2]
~ 5000 Q=
o = S 3 80
© @ 4000 52
c : O o 60 I
S 5 3000 92
o —
= S 2000 gz 40
) o <3
S S 1000 — ® 20
O —
: : 0 : 0 . :
Default NET MQO Sana Default ~ NET MQO Sana Default NET
System Comparison System Comparison System Comparison

« Sana/NET: 17% higher throughput, 20% lower latency while saving 43% bandwidth

* Sana/MQQO: 26% higher throughput, 23% lower latency, but consume 17% more bandwidth

WAN Bandwidth

WAN-Aware Execution Sharing

« Maximizing sharing # maximizing performance

* Sana prevents bandwidth contention — higher throughput, lower latency

WAN bandwidth consumption Throughput Latency

#No Share mMax Share ©1Sana #No Share MMax Share ©1Sana B No Share BMMax Share 'Sana

120
100
80

60 -
40
20

| Throughput
(records/sec)

Consumption Rate

Average Latency
Relative to No Share

1 2 4 6 8 1 2 4 6 8 11 2 4 6 8
Number of concurrent queries Number of concurrent queries : Number of concurrent queries

Low overhead: 3~4% increase in latency

Conclusion

* Sana: Multi-Query Optimization for Wide-Area Streaming Analytics
* Online incremental sharing
 Low overhead

* WAN-aware sharing to maintain high performance executions
* Maximizing degree of sharing # maximizing performance

* EC2 deployment: higher performance while significantly reduce
WAN bandwidth consumption

Thank Youl!

Questions?

Contact:
albert@cs.umn.edu

UNIVERSITY OF MINNESOTA
Driven to Discover

DCSG

Distributed Computing Systems Group

Bandwidth

Benetit of Partial Input Sharing

* Allowing partial sharing further improves performance (41% higher throughput) while
saving bandwidth consumption rate by 45%

#No Share M Strict Share " Sana ®No Share mStrict Share " Sana ®No Share M Strict Share "Sana

60 120
L o
© 50 - >@ 100
o = 2%
c —~ 40 a3y o 80
ow o~ “"v' o
= o o¥ J4< 3
o m 30 S50 o X 60
2 20 £ 0 g5 40
S 10 =~ oG
o <o 20

o AL 5 i 1! 5 m

0
1 2 4 6 8 1 2 4 6 8 1 2 4 6 8
Number of concurrent queries Number of concurrent queries

Number of concurrent queries

WAN bandwidth consumption Throughput Latency

