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Wide-Area Streaming Analytics

Real-time analysis over large continuous data streams generated at the edge

Trending topic analysis

Location-based advertisement

Meeting Internet service SLAs
Billing dashboard

Real-time traffic control

Live video analysis



WAN Resource Demand vs. Constraints

* High resource demand:
 Twitter, on average 6000 tweets/second (2016)
* Facebook log updates, 25TB/day (2009)
* Video surveillance, millions of cameras around large cities, ~3Mbps/camera (2009)
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Optimizing Queries Under WAN Constraints

* Existing approaches optimize each query individually
* Delay & WAN Traffic  [Heintz et al., HPDC'15]
* Delay & Accuracy/Quality  [JetStream-NSDI’'14, Heintz et al., SoCC'16, AWStream-SIGCOMM’ 18]

* Multi-tenancy of streaming systems

“In production environment, the same streaming system is used by many teams.”
* Social network:  trending topic, sentiment analysis, advertisement, campaign
* CDN Logs:  monitored for performance optimization, debugging, billing

* Optimizing multiple queries to handle WAN constraints



Optimizing Multiple Streaming Queries in
Wide-Area Settings

* Borrow the idea of multi-query optimization (MQO) from DBMS

* |dentify commonalities (data, work) between queries — remove redundancies

» Adaptation for streaming analytics workload
* Long-running (24x7) — incrementally optimize at runtime
* Latency sensitive — minimal interruption to existing queries

* Adaptation to wide-area settings
« Heterogeneous, limited bandwidth ~ — WAN-awareness



Benefit of MQO in Wide-Area Streaming Analytics
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Query 1:
SELECT Time,
FROM Src.US

GROUP BY WINDOW (
HAVING COUNT (*)

Topic, COUNT (*)

, Src.EU, Src.Asia
Time.Minutes (1)), Topic
> 100

Stream rate: 5 MBps
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Query 2:
SELECT Time, AdInfo.Campaign
FROM (SELECT Time, Topic
FROM Src.US, Src.EU
GROUP BY WINDOW (Time.Minutes (1)), Topic
HAVING COUNT (*) > 100) AS Tweet, AdInfo
WHERE AdInfo.Topic = Tweet.Topic

Bandwidth Usage: 40+35=36 MBps
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Operator Sharing
*Vertices can share operators iff:
* They share the same stream operator
« All of their inputs are the same o
* Eliminate redundancies in ’;
* Input streams p——
* Data processing
» Output streams i
» Strict sharing requirement : @

e Less common for vertices that are further downstream




(Partial) Input-Only Sharing

* Relax the strict-equality constraints of Operator Sharing

* Operators do not have to be the same
* Can share partial input streams oo >@
* Router operator

* Does not perform any data transformation
» Routes input streams to multiple vertices @

within a site/node

* Only added to operators with remote inpu

Same-site/node deployment
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Sharing With Multiple Queries Incrementally

*Which queries to share?
 Query-centric: maximum similarity score — limit to 1 query
* Vertex-centric: traverse vertices topologically, may be shared with multiple queries

* Incremental sharing —
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WAN-Aware Execution Sharing

* Why MQO needs network awareness?
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* WAN-aware MQO prevents bandwidth contention
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WAN-Aware Task Deployment

*Vertices that exhibit commonalities:
* Consider the sharing opportunities identitied by the Query Optimizer

*Vertices that do not exhibit commonalities:
* Local inputs — same site/node deployment
* WAN-aware placement: jointly optimize latency and bandwidth



Implementation

» Sana prototype implementation on Apache Flink
* WAN monitoring module
* WAN-aware multi-query optimization
* WAN-aware task placement
« Managing execution states of shared queries

* Router operators are proactively added

* Only added to vertices that consume remote input streams
* Prevent suspending existing executions



Experiment Setup

* Deployment on14 Amazon EC2 data centers

» Datasets & Queries
* Real Twitter trace (scaled to ~6000-8000 tweets/second)
 Distributed across 6 sites based on coordinates
* Twitter Analytics Queries: Tweet statistics, Top-k analysis, Sentiment analysis, System metrics

* Baseline Comparison:
* Default: WAN-agnostic, No Sharing
« MQO:  WAN-agnostic, Sharing
« NET: WAN-aware, No Sharing
« Sana: WAN-aware, Sharing



WAN Bandwidth

System Comparison

WAN bandwidth consumption Throughput Latency
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« Sana/NET:  17% higher throughput, 20% lower latency while saving 43% bandwidth

* Sana/MQQO:  26% higher throughput, 23% lower latency, but consume 17% more bandwidth



WAN Bandwidth

WAN-Aware Execution Sharing

« Maximizing sharing # maximizing performance

* Sana prevents bandwidth contention — higher throughput, lower latency

WAN bandwidth consumption Throughput Latency
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Low overhead: 3~4% increase in latency



Conclusion

* Sana: Multi-Query Optimization for Wide-Area Streaming Analytics
* Online incremental sharing
 Low overhead

* WAN-aware sharing to maintain high performance executions
* Maximizing degree of sharing # maximizing performance

* EC2 deployment: higher performance while significantly reduce
WAN bandwidth consumption
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Bandwidth

Benetit of Partial Input Sharing

* Allowing partial sharing further improves performance (41% higher throughput) while
saving bandwidth consumption rate by 45%
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