
Sprocket: A Serverless
Video Processing
Framework
Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, George Porter

Video processing
$ ffmpeg -i input.mp4 -vf hue=s=0 greyscale.mp4

3 min clip vs. 120 min movie
4.5min vs. 190min processing time

Low parallelism

"Show just the scenes in the movie
in which Wonder Woman appears"

Complex queries not supported

$ tr ' ' '\n' < input | sort |
uniq -c

$ ffmpeg -i input.mp4 -vf
hue=s=0 greyscale.mp4

?

Larger dataset, more complex queries

$ tr ' ' '\n' < input | sort |
uniq -c

$ ffmpeg -i input.mp4 -vf
hue=s=0 greyscale.mp4

?

Larger dataset, more complex queries
A framework for
highly parallel,

complex video pipelines

Related work
ExCamera[NSDI '17]: Low latency video encoding w/ serverless, functional codec

Facebook SVE[SOSP '17]: Large scale video processing on dedicated cluster

Sprocket
Serverless video processing framework. (AWS Lambda)

Highly parallel, low-latency.

Low cost.

Build complex video pipelines with a simple domain-specific language.

Process an hour of 1080p video 1000-way parallelism in 10s seconds for < $3.

Intra-video parallelism
Video frames are interdependent
within a Group of Pictures (GOP).
GOPs are independent of each other.
Each GOP is relative small in size.
Intra-video parallelism.

Why serverless?
Serverless: run user code in cloud without managing servers, e.g., AWS Lambda.

Each instance naturally matches GOP’s size.

Burst-parallelism – thousand of instances in sub-second on demand.

Only pay actual running time.

Cloud computer vision services, e.g., AWS Rekognition and Google Vision.

System Overview

RPC video

API call
coordinator

How do we program Sprocket applications?

decode

match
face

Scene
change

Face
Recognition

Input 0:
video

Input 1:
name

outputDraw encode

Logical DAG (Directed Acyclic Graph):

{
"nodes":[
{
"name": "matchFace",
"stage": "matchFace",
"config": {
}

},
{
"name": "decode",
"stage": "stealwork_decode",
"config": {
"stealwork": true,
"transform": "-f image2 -c:v png"

}
},
{
"name": "face_rek",
"stage": "rek",
"delivery_function": "serialized_scene",
"config": {
}

},
…

"streams":
[
{
"src": "input_0:chunks",
"dst": "decode:chunks"

},
{
"src": "input_1:person",
"dst": "matchFace:person"

},
{
"src": "decode:frames",
"dst": "scenechange:frames"

},
{
"src": "scenechange:scene_list",
"dst": "face_rek:scene_list"

},
{
"src": "face_rek:frame",
"dst": "draw:frame"

},
…

Domain-specific language: pipespec:

logical DAG
node

logical DAG
edgecontrol logic

encoded
in stages

stage
configs

dependency
definition

node:edgeID

coordinator

"youtube.com/v/12345",
"Wonder Woman"

submit RPC

Logical DAG

physical
DAG

Data dependencies

Chain of filters Decode to frames Encode from frames Full shuffling User defined?

!: (I, global states) → (0 → 1)

Ø user-defined dependency between upstream & downstream
Ø produces a mapping from inputs to outputs using inputs and/or global

states
Ø dynamically updates physical DAG

delivery function

Scheduling
Manages limited resources, e.g., concurrent Lambda workers
Simplified by serverless platform
Implements fine-grained (task-level) priority control
Priority is defined with an API
Streaming scheduler

Straggler mitigation
Stragglers seen in:
ØLambda Invocation
ØIntermediate data I/O
ØWorker task

Solved by:
ØWorker late binding + over-provision
ØSpeculative I/O
ØWork-stealing by exploiting the GOP structure

Evaluations
Questions we want to answer:
ØCan Sprocket utilize burst-parallelism provided by serverless platforms?
ØCan Sprocket schedule pipeline efficiently?
ØIs Sprocket cost-efficient?
ØCan Sprocket mitigate stragglers? (see paper)

Parallelism tests
Three-stage greyscale pipeline
Each Lambda worker handles a
GOP.
Pipeline completion time

Burst parallelism of serverless
supports highly parallel video
processing

Streaming scheduler
Users consume output while video
processed.
Meet streaming deadline while
minimizing resource consumption.
Adjust number of workers according to
progress and deadline.

Monetary cost
FFmpeg greyscale filter on a 30-min
1080p video.

Local command: a m4.16xlarge instance
w/64 cores, 256G RAM.

Spark: 18-node cluster m4.2xlarge
instance w/8 cores, 32G RAM.

Sprocket: 900 concurrent 3G RAM
Lambdas.

Conclusion

A framework for highly parallel, complex video processing is needed.
Serverless is an ideal platform for such a framework.
Sprocket introduces low-latency complex video processing with low cost.

Thank you!
Q & A

