Early Scheduling in Parallel

State Machine Replication

=duardo Alchieri, Fernando Dotti, and Fernando Pedone

Universidade de Brasilia, Pontifica Universidade Catdlica do Rio
Grande do Sul, and University of Lugano

State Machine Replication (SMR)

s Fundamental approach to fault tolerance
e Google Spanner
e Apache Zookeeper
¢e Windows Azure Storage
¢e MySQL Group Replication
¢ Galera Cluster

¢ Blockchain, ...

SMR is intuitive and simple

same order
deterministic
execution

Parallel State Machine Replication

¢e Key observation \\I

¢e Independent requests can execute concurrently

¢ Conflicting requests must be serialized and executed in the
same order by the replicas

¢s Two requests conflict if they access common state and at
least one of them updates the state

Parallel State Machine Replication

& Late scheduling

¢ Scheduling happens after E[> S :>
requests are ordered scheduler

¢e Early scheduling

¢ Scheduling decisions happen

before requests are ordered @

& E.g., worker tx executes Eb S

requests on X, worker ty
executes requests on Y scheduler

Replica worker
Rs(x) | Rs(x) | Re(x) | Ro(x) C> S 1
worker ty|

Ra(y) [R(y) C> S
worker ty
Replica |
&

Scheduling tradeoff

ngh Ideal
Late
Scheduling
oy ¥, This
5 pa_eer
= Early
g Scheduling
o
Classic
Low | SMR .
Low Synchronization High
Overhead

Our contributions

¢ Generalization of Early Scheduling
¢ Classes of requests: expressing application concurrency
¢e How to automatically map classes to worker threads

¢e How the resulting technique compares to late scheduling

Classes of requests

C
¢e Readers and writers R
External
& Class Crg: read requests conflict
&e Class Cw: write requests Cw 3 Internal
conflict

Mapping classes to workers

ee Define workers that execute requests

= t) oty t
in the class ’ ‘ CR
Concurrent

¢ Define class type

ce Sequential: one request at a time te ot c 3
W |

° Sequential
se Concurrent: requests executed

concurrently

Early Scheduling execution model

request assigned to to OR t;

class — workers)
mappln/g_/r ‘ Re ‘ R4 ‘ R3 ‘ R |::> SWOFKGI’ to
| O
| o
ordered requests E> S Cj

R4, Ro,... in class C
i scheduler %

!EHE Class C is CONCURRENT:
4

‘ ‘R?‘Rs‘Rz E>Sworkert1

Replica

Early Scheduling execution model

request assigned to to AND t;

‘ class — workers)
mappi”/g-/f ‘ ‘ ‘ R ‘ Ri E> Sworker to
O A A

ordered requests E> S Cj A

: barrier
R4, Ro,... in class C

scheduler % v v < ;
‘ ‘ ‘Rz‘Fh E> Sworkerh

!EHE Class C is SEQUENTIAL:
4

Replica

a)
Rule #5
Sequential C+ to,t1,1o
‘ :.‘
|
Sequential Co to 13,14
If C1 and C2 conflict, and are
sequential, then C1 and C2 must
have one worker in common
_ _J

Sequential
to, 11, 1o, 13

N

C Concurrent
R2

& Local reads most Concurrent G ou
2, L3

common requests

ee Workers: to,t1,t2,t3

Optimizing scheduling

& O1a: Minimize workers in sequential classes
e O1p: Maximize workers in concurrent classes
(@)

2: Assign workers to concurrent classes in proportion to
class weight (i.e., more work, more workers)

ee O3: Minimize unnecessary synchronization among classes

Optimization model

Algorithm 3 Optimization model.

15: constraints:

16: Ve eC : \/yser uses(c, t) /I R1

17: Ve € C : #[c1, c1] = Seq[ci] // R.2

18: Yy, ¢ € C : #[cq, c2] = Seqlci] Vv Seq|c;] // R.3
“‘ Described in AM PL 190 Ve, € Cot €T : #[cy, 2] ASeqle1] A Cncley] A uses[c, t] =

uses[cy, t]// R4
20: Yey, ¢ € C i #[cy, 2] A Seq[c1] A Seq[cz] =

“‘ SOIVed With KN itI‘O At € T : uses[cy, t] A uses[cy, t]//R5

21: objective:

22: minimize cost:

23t + XyieT, VeeC: Seqlc) Uses[c, t] X wlc] / ws // O.1a
24: = YreT,VeeC: Cnelc] Uses[c, t] X wlc] /we // O.1b
25: 4 Yveec:cnele] Iwlel/we = (1{Vt € T : uses|c, t]}|/nt)] //0.2

26: + ZVcl,czeC:Seq[cl]/\Seq[cz]/\—-#[cl,cz]
[{Vt € T : uses[cy, t] A uses[ca, t]}| X nt X nc // 0.3

Naive vs Optimized mapping

Sequential
to, 1, T2, 13

N

Concurrent C CR2 Concurrent

% Local reads most
° to, t1 R1 to, 13

common requests

o Workers: to,t1,to,t
- O Sequential Cyy1 Saguential

| Sequential |
ff totz

Experimental evaluation

es Prototype in BFT-SMaRt environment
¢ Early scheduling and late scheduling
¢e Configured to crash failures (not BFT)
¢e Linked-list application
¢e Single- and multi-shard deployments
e Light, moderate, and heavy execution costs

& Uniform and skewed workloads

[I | I | Q.. ..) | | L | | | |

350 early C—1 -
S 800 laelx || (||
2 —
@ 250 F T Lo
) B - o
< 200 F Tttt
3 -
_C 150 e _ >< llllllllllllll
O _ M| K
a3 100 [} TR T TR T Tk
= D]
= M | M
= 50 [RIEINE

10 |1 N s O o A

1 2 4 6 8 10 12 14 16 18 20 22 24
Number of Workers

| | | | |
early C—1
B early-naive [0
- late B
Q 100 F N .
@)
é _
S 70 e (NG| b
& 60 | E IR
S
o 40] Bl BRY S ke
e
|_
1 2 4 6 8
Number of Shards

http://www.inf.usi.ch/faculty/

pedone/

