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State Machine Replication (SMR)

s Fundamental approach to fault tolerance
e Google Spanner
e Apache Zookeeper
¢e Windows Azure Storage
¢e MySQL Group Replication
¢ Galera Cluster

¢ Blockchain, ...




SMR is intuitive and simple
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Parallel State Machine Replication

¢e Key observation \\I

¢e Independent requests can execute concurrently

¢ Conflicting requests must be serialized and executed in the
same order by the replicas

¢s Two requests conflict if they access common state and at
least one of them updates the state



Parallel State Machine Replication

& Late scheduling

¢ Scheduling happens after E[> S :>
requests are ordered scheduler

¢e Early scheduling

¢ Scheduling decisions happen

before requests are ordered @
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Scheduling tradeoff

ngh Ideal
Late
Scheduling
oy ¥, This
5 pa_eer
= Early
g Scheduling
o
Classic
Low | SMR .
Low Synchronization High
Overhead



Our contributions

¢ Generalization of Early Scheduling
¢ Classes of requests: expressing application concurrency
¢e How to automatically map classes to worker threads

¢e How the resulting technique compares to late scheduling



Classes of requests

C
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Mapping classes to workers

ee Define workers that execute requests
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Early Scheduling execution model
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Early Scheduling execution model

request assigned to to AND t;
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Optimizing scheduling

& O1a: Minimize workers in sequential classes
e O1p: Maximize workers in concurrent classes
(@)

2: Assign workers to concurrent classes in proportion to
class weight (i.e., more work, more workers)

ee O3: Minimize unnecessary synchronization among classes



Optimization model

Algorithm 3 Optimization model.

15: constraints:

16: Ve eC : \/yser uses(c, t) /I R1

17: Ve € C : #[c1, c1] = Seq[ci] // R.2

18: Yy, ¢ € C : #[cq, c2] = Seqlci] Vv Seq|c;] // R.3
“‘ Described in AM PL 190 Ve, € Cot €T : #[cy, 2] ASeqle1] A Cncley] A uses[c, t] =

uses[cy, t]// R4
20: Yey, ¢ € C i #[cy, 2] A Seq[c1] A Seq[cz] =

“‘ SOIVed With KN itI‘O At € T : uses[cy, t] A uses[cy, t]//R5

21: objective:

22: minimize cost:

23t + XyieT, VeeC: Seqlc) Uses[c, t] X wlc] / ws // O.1a
24: = YreT,VeeC: Cnelc] Uses[c, t] X wlc] /we // O.1b
25: 4 Yveec:cnele] Iwlel/we = (1{Vt € T : uses|c, t]}|/nt)] //0.2

26: + ZVcl,czeC:Seq[cl]/\Seq[cz]/\—-#[cl,cz]
[{Vt € T : uses[cy, t] A uses[ca, t]}| X nt X nc // 0.3




Naive vs Optimized mapping
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Experimental evaluation

es Prototype in BFT-SMaRt environment
¢ Early scheduling and late scheduling
¢e Configured to crash failures (not BFT)
¢e Linked-list application
¢e Single- and multi-shard deployments
e Light, moderate, and heavy execution costs

& Uniform and skewed workloads
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