
Early Scheduling in Parallel
State Machine Replication

Eduardo Alchieri, Fernando Dotti, and Fernando Pedone

Universidade de Brasilia, Pontifica Universidade Católica do Rio
Grande do Sul, and University of Lugano

�1

State Machine Replication (SMR)
Fundamental approach to fault tolerance

Google Spanner

Apache Zookeeper

Windows Azure Storage

MySQL Group Replication

Galera Cluster

Blockchain, …

�2

SMR is intuitive and simple

�3

Clients Servers

R0 R1 R2

same order
deterministic

execution

R0 R1 R2

R0 R1 R2

Key observation

Independent requests can execute concurrently

Conflicting requests must be serialized and executed in the
same order by the replicas

Two requests conflict if they access common state and at
least one of them updates the state

Parallel State Machine Replication

�4

Parallel State Machine Replication

�5

R1

R2R4

R5 R3 R0

scheduler

worker

worker

scheduler

worker tx

Replica

Replica
worker ty

R0(x)R2(x)R3(x)R5(x)

R1(y)R4(y)

Late scheduling

Scheduling happens after  
requests are ordered

Early scheduling

Scheduling decisions happen  
before requests are ordered

E.g., worker tx executes  
requests on X, worker ty  
executes requests on Y

Scheduling tradeoff

�6

C
on

cu
rr

en
cy

Low

High

Synchronization
Overhead

Low High

Classic
SMR

Late
Scheduling

Ideal

Early
Scheduling

Early
Scheduling

This
paper

Our contributions

Generalization of Early Scheduling

Classes of requests: expressing application concurrency

How to automatically map classes to worker threads

How the resulting technique compares to late scheduling

�7

Classes of requests

Readers and writers

Class CR: read requests

Class CW: write requests

�8

CR

CW
Internal
conflict

External
conflict

Mapping classes to workers

Define workers that execute requests  
in the class

Define class type

Sequential: one request at a time

Concurrent: requests executed  
concurrently

�9

CR

CWSequential

Concurrent
t0, …, tk

tk, …, tn

Early Scheduling execution model

�10

scheduler

worker t0

worker t1

Replica

class ➝ workers
mapping

ordered requests

R1, R2,… in class C

Class C is CONCURRENT:
request assigned to t0 OR t1

R1R4 R3R6

R5 R2R7

Early Scheduling execution model

�11

scheduler

worker t0R1R2

worker t1R1R2

Replica

class ➝ workers
mapping

ordered requests

R1, R2,… in class C

Class C is SEQUENTIAL:
request assigned to t0 AND t1

barrier

Mapping classes to workers

�12

Every class must have at
least one worker thread

t0,t1,t2

t3

Rule #1

➝

➝

C1

C2

If C has internal conflicts,
then it must be sequential

Rule #2CR

CW SequentialC1

If C1 and C2 conflict, at
least one must be sequential

Rule #3

Sequential

Sequential

or

C1

C2
If C1 and C2 conflict, C1 is

concurrent, and C2 is sequential,
workers of C1 are workers of C2

Rule #4

Sequential

Concurrent C1

C2

t0,t1

t0,t1,t2
If C1 and C2 conflict, and are

sequential, then C1 and C2 must
have one worker in common

Rule #5

Sequential

Sequential C1

C2

t0,t1,t2

t2,t3,t4

Local reads most 
common requests

Workers: t0,t1,t2,t3

Mapping classes to workers

�13

CR1

CW1

CR2

CW2

CRg

CWg

Synchronized
t0, t1, t2

t0, t1, t2, t3

t0, t2, t3
Sequential

Concurrent

Sequential

Concurrent

Sequential

Concurrent

t0, t1 t2, t3

t0, t2

Optimizing scheduling

O1a: Minimize workers in sequential classes

O1b: Maximize workers in concurrent classes

O2: Assign workers to concurrent classes in proportion to
class weight (i.e., more work, more workers)

O3: Minimize unnecessary synchronization among classes

�14

Optimization model

�15

. .
 .

Described in AMPL

Solved with KNitro

Naive vs Optimized mapping

�16

Local reads most 
common requests

Workers: t0,t1,t2,t3

CR1

CW1

CR2

CW2

CRg

CWg

Concurrent
t0, t1

Concurrent
t2, t3

Sequential
t0, t1, t2, t3

Sequential
t0, t1

Sequential
t2, t3

parallel

Sequential
t0, t2

Experimental evaluation
Prototype in BFT-SMaRt environment

Early scheduling and late scheduling

Configured to crash failures (not BFT)

Linked-list application

Single- and multi-shard deployments

Light, moderate, and heavy execution costs

Uniform and skewed workloads

�17

Single-shard, reads, moderate

�18

Multi-shard, mixed, moderate

�19

�20

http://www.inf.usi.ch/faculty/
pedone/

