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Today’s Keynote Forecast
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Partly cloudy with a 100% chance of data



SQL++

Apache AsterixDB

http://asterixdb.apache.org/
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(JSON, XML, CSV, …)

http://asterixdb.apache.org/


Just How Big is “Big Data”?

Cores

Main
Memory

Disks

This
is big 
data!
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Big Data / Web Warehousing
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So what’s gone 
on – and why?

What’s going on…?
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Also:  Today’s Big Data Tangle

(Pig)

SQL



AsterixDB: “One Size Fits a Bunch”

6

Semistructured
Data Management

Parallel
Database Systems

1st Generation
“Big Data” Systems

BDMS Desiderata:
• Able to manage data
• Flexible data model
• Full query capability
• Continuous data 

ingestion
• Efficient and robust 

parallel runtime
• Cost proportional to task 

at hand
• Support “Big Data data 

types”
•
•
•



CREATE DATAVERSE TinySocial;
USE TinySocial;

CREATE TYPE GleambookUserType AS {
id: int,
alias: string,
name: string,
userSince: datetime,
friendIds: {{ int }},
employment: [EmploymentType]

};

ASTERIX Data Model (ADM)
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CREATE DATASET GleambookUsers
(GleambookUserType)

PRIMARY KEY id;

CREATE TYPE EmploymentType AS {
organizationName: string,
startDate: date,
endDate: date?

};

Highlights include:
• JSON++ based data model
• Rich type support (spatial, temporal, …)
• Records, lists, bags
• Open vs. closed types
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CREATE DATAVERSE TinySocial;
USE TinySocial;

CREATE TYPE GleambookUserType AS {
id: int

};

CREATE TYPE GleambookMessageType AS {
messageId: int,
authorId: int,
inResponseTo: int?,
senderLocation: point?,
message: string

};

ASTERIX Data Model (ADM)
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CREATE DATASET GleambookUsers
(GleambookUserType)

PRIMARY KEY id;

CREATE DATASET GleambookMessages
(GleambookMessageType)

PRIMARY KEY messageId;

Highlights include:
• JSON++ based data model
• Rich type support (spatial, temporal, …)
• Records, lists, bags
• Open vs. closed types

CREATE TYPE EmploymentType AS {
organizationName: string,
startDate: date,
endDate: date?

};
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{"id”:1, "alias":"Margarita", "name":"MargaritaStoddard", "nickname":"Mags”,
"userSince":datetime("2012-08-20T10:10:00"),  "friendIds":{{2,3,6,10}},
"employment": [ {"organizationName":"Codetechno”, "startDate":date("2006-08-06")},

{"organizationName":"geomedia" ,     "startDate":date("2010-06-17"),  
"endDate":date("2010-01-26")} ],

"gender":"F”
},

{"id":2, "alias":"Isbel”, "name":"IsbelDull", "nickname":"Izzy",
"userSince":datetime("2011-01-22T10:10:00"),  "friendIds":{{1,4}},
"employment": [ {"organizationName":"Hexviafind",  "startDate":date("2010-04-27")} ]

},

{"id":3, "alias":"Emory", "name":"EmoryUnk”,
"userSince":datetime("2012-07-10T10:10:00"), "friendIds":{{1,5,8,9}},   
"employment": [ {"organizationName":"geomedia”,  "startDate":date("2010-06-17"),

"endDate":date("2010-01-26")} ]
},

. . . . .

Ex:  GleambookUsers Data



CREATE INDEX gbUserSinceIdx ON GleambookUsers(userSince);
CREATE INDEX gbAuthorIdx ON GleambookMessages(authorId) TYPE BTREE;
CREATE INDEX gbSenderLocIndex ON GleambookMessages(senderLocation) TYPE RTREE;
CREATE INDEX gbMessageIdx ONGleambookMessages(message) TYPE KEYWORD;
//--------------------- and also ------------------------------------------------------------------------------------
CREATE TYPE AccessLogType AS CLOSED

{ ip: string, time: string, user: string, verb: string, `path`: string,  stat: int32, size: int32 };
CREATE EXTERNAL DATASET AccessLog(AccessLogType) USING localfs

(("path"="localhost:///Users/mikejcarey 1/extdemo/accesses.txt"),
("format"="delimited-text"), ("delimiter"="|"));

CREATE FEED myMsgFeed USING socket_adapter
(("sockets"="127.0.0.1:10001"), ("address-type"="IP"),
("type-name"="GleambookMessageType"), ("format"="adm"));

CONNECT FEED myMsgFeed TO DATASET GleambookMessages;
START FEED myMsgFeed;

Other DDL Features
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External data highlights:
• Equal opportunity access
• Feeds to “keep everything!”
• Ingestion, not streams



ASTERIX Queries (SQL++ or AQL)
• Q1:  List the user names and messages sent by 

Gleambook social network users with less than 3 friends:

SELECT user.name AS uname,
(SELECT VALUE msg.message
FROM GleambookMessages msg
WHERE msg.authorId = user.id) AS messages

FROM GleambookUsers user
WHERE COLL_COUNT(user.friendIds) < 3;

{ "uname": "NilaMilliron", "messages": [  ] }
{ "uname": "WoodrowNehling", "messages": [ " love acast its 3G is good:)" ] }
{ "uname": "IsbelDull", "messages": [ " like product-y the plan is amazing", " like

product-z its platform is mind-blowing" ] }
. . .
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SQL++ (cont.)
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• Q2:  Identify active users (last 30 days) and group and count 
them by their numbers of friends:

WITH endTime AS current_datetime(),

startTime AS endTime - duration("P30D")

SELECT nf AS numFriends, COUNT(user) AS activeUsers

FROM GleambookUsers user

LET nf = COLL_COUNT(user.friendIds)

WHERE SOME logrec IN AccessLog SATISFIES
user.alias = logrec.user

AND datetime(logrec.time) >= startTime

AND datetime(logrec.time) <= endTime

GROUP BY nf;

{ "numFriends": 2, "activeUsers": 1 }
{ "numFriends": 4, "activeUsers": 2 }

. . .

SQL++ highlights:
• UCSD (Papakonstantiou)
• Many features (see docs)
• Spatial & text predicates
• Set-similarity matching



Updates and Transactions
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• Insert, delete, 
and upsert ops

• Key-value store-
like transactions 
(w/record-level 
atomicity)

• Index-consistent

• Q3:  Add a new user to Gleambook.com:
UPSERT INTO GleambookUsers (
{"id":667,"alias":”dfrump",
"name":"DonaldFrump",
"nickname":"Frumpkin",
"userSince":datetime("2017-01-01T00:00:00"),
"friendIds":{{ }},
"employment":[{"organizationName":"USA",
"startDate":date("2017-01-20")}],
"gender":"M"}

);



Software Stack
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AsterixDB System Overview
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Hyracks Dataflow Runtime

• Partitioned-parallel platform for data-intensive computing

• Job = dataflow DAG of operators and connectors

– Operators consume and produce partitions of data

– Connectors route (repartition) data between operators

• Hyracks vs. the “competition”

– Based on time-tested parallel database principles

– vs. Hadoop MR: More flexible model and less “pessimistic”      

– vs. SQL-on-Hadoop runtimes (e.g., Spark): Emphasis on out-

of-core execution and adherence to memory budgets

– Fast job activation, data pipelining, binary format, state-of-

the-art DB style operators (hash-based, indexed, ...)

• Early tests at Yahoo! Labs on 180 nodes (1440 cores, 720 disks)
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Made the 
AQL à SQL++

transition  
“easy”

Made the 
AQL à SQL++

transition  
“easy”

[ACM SoCC’15]

Algebricks Query Compiler Framework
Query String

Type Inference and 
Check

Rule-based Logical 
Optimizer

Translator

Rule-based Physical 
Optimizer

Hyracks Job 
Generator

Hyracks Runtime

Language-specific 
Rules

Metadata 
Catalog

Expression Type 
Computer

Comparators,
Hash-Functions,
Function Runtimes,
Null Writer,
Boolean Interpreter

Query Parser

Abstract Syntax Tree

Logical Plan

Logical Plan

Logical Plan

Physical Plan

Hyracks Job

Language Implementations Algebricks Runtime

Target Query Language

● Physical Rewrite Rules
● Language Specifics

● Query Parser (AST)
● AST Translator
● Metadata Catalog
● Expression Type Computer
● Logical Rewrite Rules

● Model-Neutral Physical Rewrite Rules
● Hyracks Job Generator

Algebricks 
● Logical Operators
● Logical Expressions
● Metadata Interface
● Model-Neutral Logical Rewrite Rules
● Physical Operators

18



Native Storage Management

Transaction 
Manager

Transaction Sub-System

Recovery 
Manager

Lock 
Manager

Log 
Manager

I/O
Scheduler

Disk 1 Disk n

Memory

Buffer 
Cache

In-Memory 
Components
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./ ./
⌃

Working 
Memory

Datasets
Manager

(            )
+
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An Indexed Dataset
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Primary Key Index

Primary Index

Secondary Index on Name

Secondary Index on Zipcode

Bloom Filter
Dataset

Partitioned local storage approach
• Hashed on primary key (PK)
• Primary index w/ PK + record
• Secondary index(es) with SK + PK
• Record updates are always local

Node 1 Node N…



Transaction Support

• Key-value store-like transaction semantics

– Entity-level transactions (by key) within “transactors”

– Atomic insert, delete, and upsert (including indexing)

– Concurrency control (based on entity-level locking)

– Crash recovery (based on no-steal logging + shadowing)

• Expected use of AsterixDB is to model, capture, and 

track the “state of the world” (not to be it)...

SELECT ... FROM Weather W...

// return current conditions by city

(Long serializable reads)
21



• Potential use case areas include
– Behavioral science
– Cell phone event analytics
– Social data analytics
– Public health
– Cluster management log analytics
– Power usage monitoring
– IoT data storage and querying
– ....

22

Example AsterixDB Use Cases



Current Status

• 4 year initial NSF project (250+ KLOC), started 2009

• Now available as Apache AsterixDB
– Semistructured “NoSQL” style data model

– Declarative queries, inserts, deletes, upserts (SQL++)

– Scalable parallel query execution

– Data storage/indexing (primary & secondary, LSM-based)

– Internal and external datasets both supported

– Rich set of data types (including text, time, location)

– Fuzzy and spatial query processing

– NoSQL-like transactions (for inserts/deletes)

– Data feeds and indexes for external datasets

– ....
23



Research Roadmap: Big NoSQL Data
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• Big NoSQL query processing on large shared clusters
– Memory management (long term and short term)

• General-purpose LSM-based storage management
– Primary and (multiple) secondary indexes and queries
– Mutation and component management policies
– Lifecycle exploitation (e.g., for incremental statistics)

• Generalized data “compression” and restructuring
– Schema-like efficiency in a schema-free world
– Column-like storage in a column-free (semistructured!) world

• Transactions revisited
– What exactly were we thinking in the 70’s?  (Hmmm….)

• AsterixDB meets ML and (social) Data Science  (à)
• Big Data visualization (àà)



Commercial Use: NoSQL Analytics
Couchbase Data Platform 

ü Service-Centric Clustered Data System

ü Multi-process Architecture

ü Dynamic Distribution of Facilities

ü Cluster Map Distribution

ü Automatic Failover

ü Enterprise Monitoring/Management

ü Security

ü Offline Mobile Data Integration

ü Streaming REST API

ü SQL-like Query Engine for JSON

ü Clustered* Global Indexes

ü Lowest Latency Key-Value API

ü Active-Active Inter-DC Replication

ü Local Aggregate Indexes

ü Full-Text Search* 

ü Operational Analytics* 25



Couchbase Analytics Service
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• Separate services, separate nodes
• Performance isolation (HTAP-like)

• Separate scale-out based on needs

• Parallel (M:N) connectivity for performance

(“NoETL for NoSQL”)

OLTP
Analytics

ANALYTICS

ANALYTICS

ANALYTICS

ANALYTICS

DATA

DATA

DATA

DCP



For More Information

• Asterix project UCI/UCR research home
– http://asterix.ics.uci.edu/

• Apache AsterixDB home
– http://asterixdb.apache.org/

• SQL++ Primer  (to get started)
– http://asterixdb.apache.org/docs/0.9.4/index.html

• SQL++ Tutorial
– D. Chamberlin, SQL++ for SQL Users  (see Couchbase website or 

Apache AsterixDB site)
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http://asterix.ics.uci.edu/
http://asterixdb.apache.org/
http://asterixdb.apache.org/docs/0.9.4/index.html


Research Roadmap: Big Active Data

Flexible NoSQL 
Data Model

Full 
Declarative
Query 
Capability

Scalable
Storage & 
Indexing

Web data 
types & 
Search I

Fast 
Continuous
Data 
Ingestion

Web data 

types & 

Search II WindowedAggregation

Continuous
Query Support

Web data 

types & 

Search II
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Our Original Motivation
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So what’s gone 
on – and why?

What’s going 
on right now?

What’s going on…?



Big Active Data (BAD) from 10K Feet
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Data Cluster

Data Publishers Data Subscribers

BAD

Broker Network

Discover Events/Produce Results Distribute Results



Example BAD User Query
– “Whenever I am in the impact zone of some emergency, 

notify me with the message for the emergency and all of 
the nearby emergency shelters.” 

– This continuous query joins three data sources:
• Emergency Report Data
• User Location Data
• Emergency Shelter Data

31



What Constitutes An “Event”?
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(More complex than content-based 
routing or windowed CQ!)

• There are three ways our example might yield new results:
1. A user enters the impact zone of an active emergency
2. An emergency arises at a user’s current location
3. An  ad-hoc triage center is set up for an active emergency



What’s Needed for Big Active Data?
• Needs unmet by Pub/Sub or traditional CQ (streaming):

– Data in context
• Incoming data may be important due to relationships with other existing 

data, including historical and static data

– Actionable notifications
• User notifications may need to be enriched based on other existing data

– Retrospective Big Data analytics
• Need “in the moment” processing plus later queries/analyses on the 

collected data

• “From Petabytes to Megafolks in Milliseconds”
– Goal:  Big Data backend (petabytes) for population-scale applications 

(megafolks), enabling individualized continuous queries, delivering results      
as fast as possible (milliseconds)

33



Related Work in a Nutshell
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Particularly BAD Inspirations

• Two particularly relevant prior projects/systems...
– NiagaraCQ
– Spatial Alarms

• Each advanced the idea of turning queries into stored data
– Rather than creating specialized data flows, process many continuous 

queries simply by joining data with queries (a data-centric approach)
– Able to scale well, but both had (very) limited query languages
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select e.message, e.impactZone, 
(select value s from EmergencyShelters s
where spatial_intersect (e.impactZone, s.location)) 
as shelters

from EmergencyReports e;

Remninder: Queries in AsterixDB



Data Ingestion in AsterixDB
• Use Asterix Feeds to rapidly ingest new data on a continuous 

basis
• We can create a data feed for EmergencyReports so that they 

can be rapidly ingested as they are being produced by data 
publishers

37

create feed EmergencyFeed using EmergencyFeedAdapter (...); 
connect feed EmergencyFeed to dataset EmergencyReports;
start feed EmergencyFeed;

(User location observations are another natural data feed use ...à)



Tracking User Locations
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create type UserLocation as { 
id: uuid,
userId: int ,
location: point, 
timestamp: datetime

}; 
create dataset UserLocations(UserLocation) primary key id; 

create feed UserLocationsFeed
using UserLocationsFeedAdapter (...);

connect feed UserLocationsFeed to dataset UserLocations; 
start feed EmergencyFeed;



Example Application Data
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timestamp emergencyType state message expirationTime ImpactZone ...

2015-11-25
09:00:00

tornado KS Please proceed to the nearest shelter 2015-11-25 09:30:00 circle("300,20 12.0") …

2015-11-25 
09:02:00

tornado IA Please proceed to the nearest shelter 2015-11-25 09:32:00 circle("100,5 10.0") ... 

2015-11-25 
09:04:00

tornado KS Please proceed to the nearest shelter 2015-11-25 10:04:00 circle("300,10 5.0") ...

2015-11-25 
09:05:00

flood IA Shelters will provide drinkable water 2015-11-25 09:10:00 circle("105,15 50.6") ...

... ... ... ... ... ... ...

timestamp userId location

2015-11-25 09:01:00 1 point("101,12")

2015-11-25 09:09:00 2 point("105,22")

2015-11-25 09:15:00 3 point("113,115")

... ... ...

shelterName location

Downtown Evacuation Center point("100,10")

Public Shelter 152 point("100,20")

Public Shelter 148 point("100,100")

... ... 

EmergencyReports

UserLocationsEmergencyShelters

Relatively static data Highly dynamic data

Moderately dynamic data



New:  Channels in BAD Asterix
• The Channel Model

– A Channel is a parameterized version of a query that will continue 
to execute over time

– Users subscribe with individualized parameters
– Goal:  Lots of Channels, each with lots of subscriptions

• Type 1: Repetitive Channels
– “data cron job”
– Executes periodically (e.g., every five minutes)
– Notifications include the full result at each execution

• Type 2: Continuous Channels
– Executes on data changes
– Checks whether these changes contribute new results
– Notifications include just the differential result

40



An Overall Example
• Suppose we have two sample channels running:

– Repetitive: “Select the message and impact zone for tornados 
occurring within the last hour in my state”

– Continuous: “Whenever I’m in the impact zone of some emergency, 
notify me with the message for the emergency, its impact zone, and 
all emergency shelters that are within that impact zone.” 

• Let’s look at the channel DDL and the (internal) workings of 
the system in this scenario…

41
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create function TornadoesInState (state) {
(select r as reports from
(select * from EmergencyReports r

where r.timestamp > current_datetime() - day_time_duration("PT1H") ) r
where r.emergencyType = "tornado"

and r.state = state)
};

create repetitive channel TornadoesInStateChannel
using TornadoesInState@1 period duration("P1H");

subscribe to TornadoesInStateChannel("IA");
subscribe to TornadoesInStateChannel("KS");

DDL for Repetitive Channel

Every hour find 
tornados in the 

last hour

Reports within current 
datetime minus 1 hour

Notice the state 
parameter

Subscriptions with 
parameter values

(states)



43

create function EmergenciesNearUser(userId) { 
(select e.message, e.impactZone, 

(select value s from EmergencyShelters s
where spatial_intersect(e.impactZone, s.location)) as shelters

from EmergencyReports e, UserLocations u
where u.userId = userId

and spatial_intersect(e.impactZone, u.location)
and u.timestamp >= e.timestamp
and u.timestamp <= e.expirationTime)

};
create continuous channel EmergenciesNearUserChannel

using EmergenciesNearUser@1;

subscribe to EmergenciesNearUserChannel ("12345”) on Broker3; 

Spatiotemporal 
Join

Enrichment of results 
(nested query)

Notice the user 
parameter

Subscription with 
parameter value

(userId)

DDL for Continuous Channel



Broker/Cluster Interaction
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Channels

BAD API Layer

Brokers

result 
notification

create/drop broker
create/drop channel
subscribe to channel

BAD infrastructure datasets

Staged Data Layer

get results

BAD Broker Network

Query datasets
UserLocations

EmergencyShelters

EmergencyReports

EmergenciesNearUser_Results

TornadoesInState_Results

TornadoesInState_Subscriptions

EmergenciesNearUser_Subscriptions

BAD Data Cluster

Application 
datasets 
(used by
channel 
functions)

Metadata    
for Brokers

and 
Channels

Each channel has a 
results dataset and a 
subscriptions dataset



Aiming to be a BAD Asterix
BAD system implementation progress so far:
1. AsterixDB itself (including feeds)
2. Broker creation
3. Repetitive channel creation
4. Subscription creation
5. Result retrieval by brokers
6. Removal of subscriptions, channels, and brokers
7. Optimization of repetitive channels
8. Initial performance and scalability testing
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Lots of BAD Plans Ahead
• Implementation of (batch) continuous channels
• More performance and scalability testing
• Non-monotonic queries and data
• Scalable distributed broker network (in progress)
• Framework and tools for building BAD applications
• .....
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Some BAD Memories For You
• Distinguishing characteristics of a truly BAD platform

– Data in context
• Incoming data may be important due to its relationships with existing data

– Actionable notifications
• User notifications may need to be enriched based on other existing data

– Big Data analytics
• Able to do retrospective queries (and other analyses) on the data as a whole

• BAD Cluster: BAD extensions to Apache AsterixDB
• Brokers, channels, and subscriptions

• Initial (data-centric) internals

• Bad Broker network: Work in progress by our middleware 
colleagues

50



Getting BAD Information

• Project overview paper (with a data focus)
– M. Carey, S. Jacobs, and V. Tsotras, “Breaking BAD: A Data Serving 

Vision for Big Active Data”, Proc. of the 10th ACM Int’l. Conf. on 
Distributed and Event-Based Systems (ACM DEBS), Irvine, CA,       
June 2016.

• Current project status (again with a data focus)
– S. Jacobs, X. Wang, M. Carey, V. Tsotras, and Y. Uddin, "BAD to the 

Bone: Big Active Data at its Core", submitted for publication,         
July 2018.

• UCI/UCR BAD project website
– http://asterix.ics.uci.edu/bigactivedata/

51
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Briefly: AsterixDB Meets Data Science

Node 1

Disk

Feed

Adapter

JSON, CSV, ....

JSON, CSV, ....

...

Node N

Partition 1

UDF LSM

Partition M

AsterixDB

Apache 

OpenNLP
Stanford 

CoreNLP

Sentiment Analysis LibrariesTraining Data Prediction Model

Type:Tweet

Type:TweetSentimentType

Partition 2

UDF LSM

...

Random 

Partition

Field 

Partition

Issues of current interest include:

• Handling of expensive UDFs

• Python UDFs and Pandas-like DF support

• ML: Weka, Scikit-learn, Spark, TensorFlow, …

• Underlying support for Big Data visualization



Briefly: Big Data Visualization
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Questions…?


